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不同场景下的多臂赌博机问题

摘 要

在本⽂中，我们研究了不同条件下的多臂赌博机问题。准确⽽⾔，我们考虑多臂赌博机

（bandit）问题和赌博机凸优化。赌博机凸优化被视为泛化版本的多臂赌博机问题，其动作集

是连续域⽽不是离散集。特别地，我们关注具有复杂反馈形式的多臂赌博机问题和赌博机凸

优化，例如延迟和匿名反馈这种复杂的反馈形式。在整篇论⽂中，我们的⼯作可以归纳为三

个部分。⾸先，我们对多臂赌博机和赌博机凸优化的领域进⾏了⼴泛的⽂献调研。然后，我

们提出了⼀种最优算法，该算法能够让在某种复杂反馈下的赌博机凸优化的⽬标函数达到最

⼩损失（regret）上界。最后，我们进⾏了⼤量的实验来验证算法的有效性和正确性。

⾸先，我们对多臂赌博机问题和赌博机凸优化问题领域进⾏了⼴泛的⽂献调查，其中包括

最基本的、不带任何变种的多臂赌博机问题和赌博机凸优化的研究进展，以及它们在复杂反馈

条件下变式问题的研究进展。其⼀，我们调研了解决随机（stochastic）赌博机和敌对（adversarial）
赌博机问题的基本结果。对于具有复杂反馈的多臂赌博机问题，⼀般的想法是在某⼀区间内

连续出发特定动作，并观察由此单类动作引起的反馈，以此解耦复杂的复合反馈情况。其⼆，

⾄于赌博机凸优化问题，它可以被视为多臂赌博机问题和在线凸优化的混合问题，这⽐任⼀

原始问题都困难得多。解决赌博机凸优化问题算法的⼀般思想是通过梯度估计将基于梯度的

在线凸优化算法变换为基于梯度的赌博机凸优化算法。特别地，我们可以在不计算梯度的情

况下执⾏梯度下降的策略。也就是说，我们将使⽤基于随机性的梯度估计器。

其次，我们研究了延迟参数 d 未知情况下收到延迟和匿名反馈的赌博机凸优化问题。我

们率先提出了⼀个通⽤的算法框架，可以应⽤于在这个复杂反馈下的赌博机凸优化问题。该

框架的基本思想很简单，即⾸先执⾏延迟估计，然后套⽤延迟固定情况下的算法。其中，延

迟估计在算法框架的每个阶段分步执⾏。⽬前，我们提出了两种复杂反馈下的赌博机凸优化

算法。其中⼀个算法达到 Θ(T2/3)损失上限，⽽另⼀个达到 Θ(
√

T)损失上限。值得⼀提的是，

第⼆种算法具有在同等设定下，已知最佳的赌博机凸优化问题的损失上限。此外，它是⼀种

最优算法，因为已经证明损失下限是 Ω(
√

T)。
最后，我们在本论⽂中进⾏了⼴泛的实验。初步⽬标是验证我们提出的算法的有效性和

正确性。在整个数值实验中，算法的性能得到了验证，证实了我们算法分析的正确性。除了

验证所提算法的损失上界之外，还将最优算法与⼀个基线算法进⾏了⽐较。我们的最有算法

在很⼤程度上优于基线算法，这也证明了算法的最优性。

关键词：多臂赌博机，赌博机凸优化，复合损失，延迟反馈，未知延
迟参数
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MULTI-ARMED BANDITS IN VERSATILE SETTINGS

ABSTRACT

In this thesis, we study the multi-armed bandits (MAB) problem in versatile settings. Specifi-
cally, we consider the MAB problem itself and bandit convex optimization (BCO). Bandits convex
optimization can be regarded as a general multi-armed bandits problem, where the action set is a
continuous domain, instead of a discrete set. In particular, we pay our attention to MAB problem
and BCO with complex feedback, such as delayed and anonymous feedback. Throughout the whole
thesis, our work can be summarized in three parts. At first, we conduct an extensive literature survey
on the field of MAB problem and BCO, including its variations with complex feedback. Then, we
propose an optimal algorithm which reaches the best state-of-the-art regret upper bound of the BCO
with a certain form of complex feedback. At last, we conduct extensive experiments to verify the
effectiveness and correctness of our algorithm.

At the first place, we conduct an extensive literature survey on the field of MAB problem and BCO,
which include the research progress on the basic MAB problem and BCO, and their corresponding
variations with complex feedback. We have investigated the fundamental result for stochastic bandits
and adversarial bandits. For MAB with complex feedback, a general idea is to fix the action for a
certain length interval and observe the reward incurred by a single action in the consecutive interval,
which can decouple the complex composite feedback. As for BCO, it can be viewed as a mixed
problem of MAB problem and online convex optimization (OCO), which is much harder than any of
the original problems. The general idea of BCO algorithm is to transform a gradient-based algorithm
for OCO to a gradient-based algorithm for BCO by gradient estimation. In particular, we can perform
gradient descent without calculating the gradient by gradient estimator.

Secondly, we study the problem of BCO with delayed and anonymous feedback while the delay
parameter d is unknown. For the first of time, we propose a general algorithm framework which
can be applied to the BCO problem in this hard setting. The underlying idea of this framework is
straightforward, that is, first estimate the delay and then follow the fixed-delay algorithm. The delay
estimation is performed during each phase of the framework. At present, we propose two algorithms
for BCO with complex feedback. At the same time, one of the algorithm reach near Θ(T2/3) regret
upper bound, while the other one reach near Θ(

√
T) regret upper bound. To the best of the authors’

knowledge, the second algorithm has the best state-of-the-art regret upper bound of the BCO with
delayed and anonymous feedback while the delay parameter d is unknown. Moreover, it is an optimal
algorithm as well, because it has been proved the regret lower bound is Ω(

√
T).

Ultimately, we conduct extensive experiments of various mentioned algorithms in Chapter 4
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in Chapter 6. The preliminary goal is to verify the effectiveness and correctness of our proposed
algorithm, as well as some comparisons with existing works. Throughout the numerical experiment,
the algorithm’s performance has been verified, which confirms the correctness of our proof. In
addition to the verification of the regret upper bound of the proposed algorithm, the proposed optimal
algorithm has been compared with the baseline algorithm. Unexpectedly, our algorithm outperforms
existing baseline algorithm largely, which proves the optimality of my algorithm as well.

KEY WORDS: Multi-armed bandits, Bandit convex optimization, Com-
posite losses, Delayed feedback, Unknown Delay Parameter
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Chapter 1 Introduction

The multi-armed bandit (MAB) problem is a sequential programming problem such that the
player needs to select an action in each round, while the reward is only observed after the action is
chosen. The basic motivation of the player is to maximize its gain among limited rounds [1] . The
scenario comes up with the dilemma of exploration and exploitation. Specifically, the player can
explore more actions to get more information on the reward of actions. Or the player can be fixed on
the present best empirical action and get full use of the temporal largest reward while suffering from
the danger of missing the best action. Fig. 1–1a shows the situation a play may face at the beginning
of a specific round t.

(a) Diagram of multi-armed bandits
(b) Las Vegas slot machines

Figure 1–1 Multi-armed bandit problem and slot machines2

This problem comes from the game of a gambler, who sits at a row of slot machines and
make decisions on machines to play, as shown in Fig. 1–1b, in each round of the game. The
empirical motivation of MAB problem includes clinical trials [2] (investigating the effects of different
experimental treatments while minimizing patient losses) and financial portfolio design [3]. Nowadays,
the bandit problem or the idea of bandit (i.e. the payoff of an action is only observable after the action
is taken) plays an important role in various tasks, including but not restricted to advertising placement
[4], website optimization [5], and packet routing for minimizing delays in a network [6]. In particular,
one of the most common applications of MAB problem is the content recommendation [7] system in
e-commerce website or social media platform.

As for the mathematical form of the MAB problem, we can associated each arm with a distribution,
i.e. distribution Bi for arm i, for i ∈ {1, ..., N}. Denote the mean value of distribution Bi as µi. There
are a set of distributions {B1, ..., BN }. At round t, if player pull arm i, then he will get a reward ri(t)
from a sample of distribution Bi. The player can only observe the reward ri(t) after he pulling the arm

2Fig. 1–1a is fromhttps://towardsdatascience.com/solving-the-multi-armed-bandit-problem-b72de40db97c,
and Fig. 1–1b is from Mr. Yamaguchi, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=57295504.
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i at round t. In most of the cases, the player are only assumed to pull the arm for T times. In other
words, there are only T rounds. The player needs to make decision in each round, with the objective
is to maximize the sum of the collected rewards. The regret R(T) after T rounds is defined as the
difference between the maximum reward by an optimal policy and the total collected reward, which
is given by

R(T) = T max
i∈{1,...,N }

µi −
T∑
t=1

ri(t)

In fact, the MAB problem can be regard as a one-state Markov decision process.
Apart from the traditional MAB problem, Bandit convex optimization (BCO) can be regarded

as generalization of MAB problem. Specifically, in the context of BCO, the actions set becomes a
continuous region instead of a discrete set for MAB. Besides, BCO is general and powerful framework
for modeling learning problems with sequential data under partial feedback [8]. In the BCO model,
at each round, the learner selects an action from a bounded convex set and observes the payoff of an
action by a convex loss function. The feedback received is only the value of the loss function at xt ,
i.e. ft(xt), and no gradient or any other higher order information about the function is provided to the
learner, not to mention the loss function itself at time t. BCO can model more complex scenario than
traditional MAB and shows powerful expressiveness in many applications [9].

As for the mathematical form of the BCO, it is a iterative game between a player and an adversary,
for T rounds. At each round t ∈ {1, ...,T}, the player will choose an action xt ∈ K. Then, the adversary
will choose a loss function ft ∈ F , independent of the user’s action. Finally, the player will suffer
the loss ft(xt). And the loss value ft(xt) is the only feedback that the player will receive. Here, K is
the decision set, and F refers to the function set. Generally, for OCO (Online Convex Optimization,
full information version of BCO) scenario, the decision set K is assumed to be convex, and that all
functions in F are assumed to be convex as well. The similar assumption is adopted here for BCO
framework. The regret R(T) is defined as the difference of the sum of the received loss and the
minimum sum of the loss by an optimal policy, which is given by

R(T) =
T∑
t=1

ft(xt) −min
x∈K

T∑
t=1

ft(xt)

The player’s objective is the similar as that of MAB, i.e. minimizing his regret. The feedback sequence
f1(x1), ..., fT (xT ) corresponding to its action sequence x1, ..., xT helps the player to learn and improve
its strategy. In the OCO framework, the loss function ft(x) will be send to the player as the feedback,
thus the player will adopt a strategy by gradient. In other words, the player will calculate the gradient
of the loss function within the action set. However, only limited information, i.e. the loss value can
be observed by the player, for the BCO framework. The player will try to make gradient estimations
by introducing randomness. The player’ objective will be modified slightly, that is, to minimize the
expected regret E{R(T)}.

It is worth to mention that one of the most interesting applications of MAB or BCO is the
content recommendation [7] system in e-commerce website or social media platform. However, the
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original MAB or BCO framework is not powerful enough to model this scenario. Because, in these
applications, the feedback of the user after receiving the recommendation is not immediately reported
to the system. Instead, the feedback will be occurred sometime in the future and fades over time,
after the recommendation was issued. The delay of feedback or reward makes the original MAB or
BCO problem more intractable. Generally speaking, the delay depends on many factors, especially
those related to users. This leads to the fact that the observable reward of the present time slot is a
composite effect of some previously issued recommendation.

The scenarios of MAB problem with delayed feedback has been investigated in the literature.
However, existing works make the assumption that the contributions of past recommendations to the
combined reward is individually knowable, which is not always satisfied in the real system. Recently,
in [10], the authors considered the bandits with delayed feedback and only the combined reward is
available to the system, while the individual reward components remain unknown. Then in [11], the
authors extended the work in [10]. In particular, they assumed that the payoff of action is spread
among d continuous time slot. Besides, instead of a stochastic bandit, the adversarial bandit was
considered here. The authors in [11] named this kind of feedback as composite anonymous feedback,
which portrayed the effect of an action on the time scale.

However, even the composite anonymous feedback setting cannot model the complexity in the
real system. The problem remains at the proper estimation of delay parameter d, which is the length of
consecutive effect of a single action. Online advertising provide several use cases for this setting. The
delay parameter d is always unknown in reality. For example, a click due to the browsing of pictures,
later followed by conversion or a user that interacts with a recommended item multiple times over
several days. In these cases, people are hard to tell how much time the user will respond to the system
and for exactly how long it will last. Thus, it is urgent to investigate the MAB and BCO problem with
composite anonymous feedback, where the delay parameter d is unknown.

In this project, we will be dedicated to solving the MAB and BCO problem in the harder settings
than existing works to model more complex scenario. Specifically, we expect to solve bandit problem
where the feedback or payoff of an action is more complex. For example, we may pay attention to the
case where payoff is not observed immediately after the action is taken, but spread over multiple time
slots. The problem will be tricky to handle once the length of the effective time slot of an action is
unknown. In other words, d is the delay parameter which is unknown in our assumption. This implies
that the instantaneous loss observed by the player at the end of each round is a sum of as many as d

loss components of previously played actions. Hence, unlike the standard bandit setting with delayed
feedback, where the player can observe the individual delayed losses, but only their sum. Besides,
due to the agnosticism of the delay parameter d, the player even not know how many previous actions
have an effect on the observed reward.

Apart from novel non-stochastic or adversarial MAB problem, the BCO with general feedback
as the extension of our base algorithm and will be investigated as well. As we all know, BCO is a key
framework for modeling learning problems with sequential data under partial feedback. The learner’
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s objective is to minimize his regret, that is the difference between his cumulative loss over a finite
number of rounds and that of the loss of the best-fixed action in hindsight. The limited feedback makes
the BCO setup relevant to a number of applications. Moreover, it is exact the limited information
that makes this problem hard. Generally, it falls into the area of online learning. The BCO problem
with various feedback remains open and we are interested in solving this problem while preserving
the optimality [12]. The possible contribution of this thesis can be given as follow:

1. Initially, we are dedicated to designing an algorithm or strategy for players under this setting
of bandit problem and BCO. One the one hand, we will try to design a new algorithm which
is suitable for players to adopt in this harder bandit setting. On the other hand, we will try
to propose a general reduction, which can transform a standard bandit algorithm into one
that can operate in this harder setting. Both kinds of research topic will be interesting. It
will be challenging but meaningful to generalize our algorithm proposed in the context of the
bandit problem to BCO and ensure its robustness. In other words, we will regard BCO as a
generalized MBA problem with the same feedback setting.

2. Apart from designing the algorithm or general reduction method. It is of significant importance
to show the performance of the algorithm. Specifically, it will be required to show the regret
of the designed algorithm, including the upper bound and lower bound. It will be diverting
to show how the regret of the transformed algorithm can be bounded in terms of the regret of
the original algorithm if we focus on designing a general reduction. In a word, we will pay
much attention to analyze the regret of the proposed algorithm.

3. Moreover, the optimality of the proposed algorithm will be our goal as well. It will be exciting
to prove that our proposed algorithm is optimal or the reduction is optimal such that cannot be
improved in general. For example, to prove the optimality of the reduction, one feasible idea
is to prove a lower bound on the regret of any bandit algorithm in this setting that matches the
upper bound obtained via our reduction.

4. Ultimately, numeric simulation is required to verify the effectiveness of the proposed algo-
rithm. Extensive experiments should be conducted to prove the robustness of our algorithm in
multiple applications. Besides, the comparison between our algorithm and other algorithms
under the same setting will be convincing as well. It will be shown that in what a way our
algorithm outperforms existing works.
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Chapter 2 Related Work

In this chapter, we will list out some existing works related to MAB and BCO problem, including
the research history, the state-of-the-art algorithms, variations and interesting applications.

2.1 Multi-armed Bandit
According to the nature of the reward process, bandit problem can be divided into three categories,

including stochastic bandit, adversarial bandit, and Bayesian bandit. For each type of MAB problem,
there is a effective algorithm to solve it.

Initially, for the stochastic bandit problem, the Upper Confidence bounds (UCB) algorithm was
proposed in [13], which realized a log(T) regret upper bound. The authors considered a stochastic
multi-armed bandit problem for infinite time horizon with the goal of proposing novel policies whose
regret bound is small enough. They constructed index policies that relied on the playoff from each
arm by their sample mean. These policies are computationally efficient and are also more general.
They achieved a O(log(T)) regret upper bound.

For the adversarial bandit problem, the Exp3 (which stands for “exponential-weight algorithm
for exploration and exploitation") was proposed in [14]. In this paper, the author made no statistical
assumptions about the distribution of the process generating the rewards for each arm. They gave a
solution to the bandit problem in which an adversary is fighting against the player. For a game of T

rounds, they showed that the reward of their policy approached that of the optimal policy at the rate
√
T . They also proved the optimality of this bound by a showing a feasible lower bound. Moreover,

they also showed that their policy approached the reward of any policies at a similar rate. Finally, they
proved their proposed algorithm approached the minimax reward of an unknown strategy at the rate
O(
√

T).
Ultimately, for the Bayesian or Markovian bandit problem, the Gittins index method was proposed

in [15], and then improved in [16] largely. By the way, the Bayesian or Markovian bandit means the
bandit where played an action modifies its state in the Markovian space while it is not changed when
not played. The player will get a reward, which depends on a state, after he pulling an arm. The
number of states and the state transition probabilities of an action are unknown to the player. In this
setting, they proved that with specific condition on the state transition probabilities of different arms,
a sample mean based index policy reached logarithmic regret. Their work revealed that sample mean
based index algorithms can be applied to the Markovian bandit problem without deterioration in the
order.

In this thesis, we focus on adversarial bandit and adversarial bandit convex optimization with
oblivious rewards.
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2.2 Bandit Convex Optimization
The advantage of OCO framework is its power to generalize many problems from the field of

online learning, and provide tools to fixing them. Adequate research throughout the past decade has
broght many ingenious algorithms with worst case performance lower bound. That is why many
researcher choose to adopt and study the OCO framework in their work. Find the tight regret upper
bound of the BCO is an open problem and relatively challenging. The challenges comes from the
limited informations bottleneck, that the player only receives a single point function value. A natural
problem for the player is to balance between exploiting and exploring.

The general idea of BCO algorithm is to transform a gradient-based algorithm for OCO to a
gradient-based algorithm for BCO by gradient estimation. Two common gradient estimators are the
sphere sampling estimator and the ellipsoidal sampling estimator. In particular, we can perform
gradient descent without calculating the gradient. Instead, we use the gradient estimator, which is
based on the randomness. In [17], the author summarized a general reduction from limited information
to full information as

1. One universal method for apply an OCO algorithm that relies only on the gradients of the loss
functions, to a set of random vector variables with designed sophisticated rule .

2. Constructing the random variables that will help the reduction template to reach small enough
regret bound.

For adversarial BCO, this problem was first considered by authors in [8]. They designed a clever
algorithm to resolves the “exploration-exploitation” dilemma by proposing a gradient estimation
algorithm. They reached an expected regret upper of O(T3/4) in a game against an adversary with
bounded and Lipschitz-continuous convex losses. Then in [18], the authors showed a lower bound
of Ω(

√
T) for the bandit with an adversary, having strongly-convex and smooth loss functions. Table

2–1 from [19] shows the state-of-the-art regret bound of OCO and BCO in versatile environments.
In particular, the authors in [19] proposed an efficient algorithm that achieves a regret of Ω(

√
T) for

BCO with the setting assuming that the adversary’s loss function is strongly-convex and smooth and
the actions set is a constrained decision set. It is the work shown in the cell to the far right of the
second line of the Table 2–1.

Setting Convex Linear Smooth Str.-Convex Str.-Convex & Smooth

Full-Info. Θ(
√

T) Θ(log(T))

BCO
O(T3/4) O(

√
T) O(T2/3) O(

√
T)

Ω(
√

T)

Table 2–1 Known regret bounds in the Full-Info./ BCO setting.

For stochastic BCO, the state-of-the-art progress was obtained by authors in [20]. Their work
considered the problem stochastic BCO where loss functions are convex, Lipschitz on a convex and
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compact set. The underlying ideal is to allow the algorithm to receive the noisy version of the function
value at the chosen action point. Their algorithm reached O(poly(n)

√
T) regret, which means their

algorithm is optimal in terms of the round number T . Here n is the dimension of the space.
Recently, there are some variations of traditional algorithm for BCO, such as multi-point query

and multi-scale exploration. Specifically, the authors in [21] introduced the multi-point bandit setting,
where the player can query a loss function for multiple times during one round of the game. They
showed that the regret bound are very close to full information setting, i.e. the OCO setting where the
loss function can be observed totally, if the player is allowed to query two point a time. Moreover,
the regret bound can be even proved to be the same as that of full information setting, if the player is
allowed to query m points a time. Then in [22], the author constructed a map to solve the adversarial
BCO. The map is from a convex function to a multi-scale exploration distribution with respect to the
function. The authors proved their algorithm reached O(poly(n)

√
T) regret bound.

2.3 MAB & BCO with Delayed Feedback
Online advertising and product recommendation are key applications for multi-armed bandit

models. The reward is not always observable immediately after the action is taken. Instead, a delay
is very common and it will be coupled with the feedback, which we refer to as a conversion. For
example, when you are browsing an online shopping site, such as Taobao1 or JD2, you may need a
few seconds, a few minutes, or even a few days to feel like clicking or buying a product, after the first
time you see the picture of an item. It is of great practical significance to study the scenarios of MAB
problem with delayed feedback.

The scenarios of MAB problem with delayed feedback has been investigated in the literature.
In [23], the author analyzed the influence of delay on the regret bound for online learning strategies.
They proposed a general reduction that transform an algorithm for non-delayed setting into algorithm
that for the delay feedback. Then in [24], the author studied the MAB with delaye as well. They
showed performance lower bounds as well as two simple but efficient algorithms based on the UCB
[13] and KLUCB [25] frameworks. Besides, in [26], the authors was investigating on the networks
of cooperative learning agents that communicate to solve a classical nonstochastic bandit problem.
In particular, agents rely on a communication network to get informations about actions selected
by other agents, and deliver messages with delay d. They introduced Exp3-Coop, a cooperative
version of the Exp3 [14] algorithm and showed O(

√
T ln K) regret bound, where K is the number of

action. It is worth to mention that they provided the first characterization of the minimax regret for
MAB with delayed feedback. However, these works like [23, 24, 26] make the assumption that the
contributions of past recommendations to the combined reward is individually knowable, which is not
always satisfied in the real systems.

Recently, in [10], the authors considered the bandits with delayed, aggregated anonymous feed-

1www.taobao.com
2www.jd.com

– Page 7 of 59 –

www.taobao.com
www.jd.com


Multi-armed Bandits in Versatile Settings

back, which is a variation of classical MAB problem. They assumed the payoff are postponed with
a random delay. Besides, the information of which arm incurred to a specific payoff is lost. They
proposed an algorithm that is the same as the worst regret of the non-anonymous setting when the
delay parameter is bounded, and up to logarithmic factors for unbounded delay. Then in [11], the
authors extended the work in [10]. In particular, they assumed that the payoff of action is spread
among d continuous time slot, which makes this problem more intractable. Besides, instead of a
stochastic bandit, the adversarial bandit was considered here. The authors in [11] named this kind of
feedback as composite anonymous feedback, which portrayed the effect of an action on the time scale.
They proposed a general reduction which can transform a base algorithm for MAB into ones that can
be used in this hard setting. Moreover, a version for transform a base BCO algorithm is provided as
well.

However, even the composite anonymous feedback setting is not powerful to model the real
system due to the agnosticism of the delay parameter d. How to estimate the delay parameter d is a
central problem to break the limitation of the model, where d is the length of consecutive effect of a
single action. Online advertising provide several use cases for this setting. It is necessary to investigate
the MAB and BCO problem with composite anonymous feedback, where the delay parameter d is
unknown.

2.4 Application of Bandit Problem
The bandit has been applied in various applications. The empirical motivation of MAB problem

includes clinical trials [2] and financial portfolio design [3]. Nowadays, the bandit has plays an impor-
tant role on advertising placement [4], website optimization [5], and packet routing for minimizing
delays in a network [6]. In particular, one of the most common applications of MAB problem is the
content recommendation [7] system in e-commerce website or social media platform.

At the very beginning, in [2], the authors studied the problem of randomized clinical trials. They
optimized the two-armed Bernoulli bandit problem to a variety of ethically motivated cost functions.
They conducted numerical experiments that produced a heuristic approximation that applied even to
very large horizons. Besides, they proposed a near-optimal strategy that is appropriate even when
the horizon is unknown or unbounded. Since the tradeoff between exploration and exploitation to
maximize rewards in bandit problem naturally establishes a connection to portfolio choice problems.
Thus, in [3], the authors proposed an algorithm for conducting online portfolio choices by effectively
exploiting correlations among multiple arms. Their algorithm was based on UCB policy, and an
optimal portfolio strategy was proposed. The algorithm demonstrated advantage in risk-adjusted
return and cumulative wealth.

In addition to the empirical motivation of MAB problem, many interesting applications have
shown up in the recent years. In [5], the authors introduced the two characters: exploration and
exploitation, to apply the bandit algorithm to website optimization. Thy further applied ϵ-Greedy
algorithm, Softmax algorithm, and UCB algorithm on the domain of website optimization. Then,
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in [4], the authors defined a universal framework for combinatorial multi-armed bandit (CMAB)
problems, where novel arms with unknown distributions become super arms. They proposed CUCB
algorithm that reached O(log(T)) regret. Interestingly, they applied their CMAB algorithm to proba-
bilistic maximum coverage (PMC) for online advertising and gained success. It is worth to mention
that in [6], the authors studied problem of the opportunistic routing in wireless ad-hoc networks under
an unknown probabilistic local broadcast model. They applied bandit algorithm to this problem and
proposed both centralized and distributed online learning algorithms, which approached the optimal
logarithmic regret bound, with the objective of governing the sequential choice of relay nodes.
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Chapter 3 Problem Stetting and Background

3.1 Problem Setting
3.1.1 Bandit Convex Optimization

In the Bandit Convex Optimization (BCO) model, the player chooses x ∈ K at round t, whereK
is a convex and compact domain with dimension n. After committing to this choice, a cost function
ft ∈ F : K 7→ [0, 1] is revealed, which is convex over Ω. Here F is the bounded family of cost
functions available to the adversary. In particular, the player does not know the entire loss function
ft . Instead, the cost incurred to the player is exactly the value of the cost function at the point she
committed to ft(x).

In this work, we consider BCO with anonymous and composite feedback, which is similar to
the model in [11]. We assume each function ft is the sum of d sub-components f (0)t , ..., f (d−1)

t , with
f (s)t : K 7→ [0, 1] so that, for any x ∈ K,

ft(x) =
d−1∑
s=0

f (s)t (x) ∈ [0, 1]

For each f (s)t (x) sub-component of the loss function ft(x), it is assumed to be convex as well. Besides,
we can regard the sub-component f (s)t (text) as a the product of original loss function ft(x) and a
constant ratio r (s)t , which is given by

f (s)t = r (s)t ft(x)

for s = 0, ..., d − 1 and t = 1, ...,T . Here, the constant ratio r (s)t is assumed to be non-negative and
subject to the law of conservation of summation, which is given by

d−1∑
s=0

r (s)t = 1

for t = 1, ...,T .
In this thesis, we consider oblivious adversaries, which means all the loss functions f1(x), ..., fT (x)

and constant ratios r (1)1 , ..., r
(d)
1 , ..., r

(1)
T , ..., r

(d)
T , are decided before the beginning of the game, which

are independent of user’s action. Let T denote the total number of game iterations. At each round
t = 1, 2, ...,T , the payer select action yt ∈ K and receives loss ft(yt). Just as mentioned above, the loss
spreads over d consecutive time slots, with constant ratio r (s)t in round t + s. Thus, the action yt will
incur f (0)t (yt) at time t, f (1)t (yt) at time t + 1, ..., f (d−1)

t (yt) at time t + d − 1. Nevertheless, it should
not be neglected that what the player really receive at round t is the sum of d-many sub-components
incurred by actions chosen in the nearest d time slots. The received feedback (or received composite
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loss) is given by f ◦τ (yτ−d+1, ..., yτ) as

f ◦τ (yτ−d+1, yτ−d+2, ..., yτ) =
d−1∑
s=0

f (s)t−s(yt−s) =
d−1∑
s=0

r (s)t−s ft−s(xd−s) (3–1)

where r (s)t = 0 when t < s.
Next, we need to bound the received composite loss. At the first glance, we may conclude

f ◦τ (xτ−d+1, xτ−d+2, ..., xτ) is within the region [0, d], since ft(x) and its sub-component are within the
region [0, 1]. In fact, the tight bound of composite loss can be given in the following theorem.

Theorem 3.1.
The cumulative sum of d recent composite losses up to round t by action xt over d consecutive steps
is within the region [0, 2d − 1].

Proof.

t∑
τ=t−d+1

f ◦τ (x, ..., x) =
t∑

τ=t−d+1

d−1∑
s=0

f (s)t−s(x) ≤
t∑

τ=t−2d+1

d−1∑
s=0

f (s)τ (x) =
t∑

τ=t−2d+1

fτ(x) ≤ 2d − 1

□

In fact, Theorem 3.1 is the BCO counterpart of Eq. (2) in [11].
The goal of the algorithm is to minimize its expected regret R(T) against the best fixed action

from the feasible domain K. Thus, we have

RT = E
[ T∑

t=1

f ◦τ (xτ−d+1, ..., xτ)
]
−min

x

T∑
t=1

f ◦t (x, x, ..., x)

We define the expected regret with respect to the real received composite loss f ◦t instead of the actual
loss ft , since the composite loss is the player really receives during the game.

One the on hand, setting is almost the same as that of [11], which generalizes the composite loss
function of [27] as well. In particular, the linear composite loss function in [27] can be regarded as
a instantiation of the composite loss (3–1) once we neglect different sub-components from the loss
function components. It is worth to mention that in the linear case, the feedback in [27], individual
loss be easily reconstructed in a recursive manner, which is impossible in our setting.

On the other hand, our model setting is very different from that in [11], that is our delay parameter
d is assumed to be unknown. In other words, apart from the delayed and composite feedback, we
consider a harder setting than the model in [11]. Specifically, we assume the delay parameter d is
unknown, which means we do not have any prior knowledge about d. How to estimate the delay
parameter is the key of the algorithm design to solve this harder problem.

3.1.2 Multi-armed Bandit

In addition to Bandit Convex Optimization, Multi-armed Bandit will be considered at the same
time. Since MAB can be regarded as a simplification of BCO. We will introduce the model setting in
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MAB shortly, which is given in the following. In fact, most of the parts are same as that of BCO with
delayed and anonymous feedback while the delay parameter d is unknown, except the that the feasible
set has changed to a discrete set from a continuous constrained set in BCO. By the way, MAB is not
our major problem in this thesis.

The nonstochastic MAB with oblivious adversary is consisted of N arms. The feedback is delayed
and anonymous while the delay parameter d is unknown. The loss at round t is given by lt(i) ∈ [0, 1]
of action i ∈ {1, ..., N} as

lt(i) =
d−1∑
s=0

l(s)t (i)

The lt(i) is the sum of d sub-components, lt(i)(s) ≥ 0 for s = 0, ..., d − 1. Denote the action chosen
by the player at round t as It . If It = i, action It will incur losses l(0)t (i) at time t, ..., l(d−1)

t (i) at time
t + d − 1. In this case, the player receives delayed and anonymous loss, which is the composite effect
of recent d actions. Thus, we define composite loss function l̃t of sequences of actions i1, ..., id as

l̃t(i1, ..., id) =
d−1∑
s=0

l(s)t−s(id−s)

where l(s)t−s(id−s) = 0 when t < s. In other words, what the player really observe at round t is the
composite loss

l̃t(It−d+1, It−d+2, ..., It) =
d−1∑
s=0

l(s)t−s(It−s)

The objective of the player is the same as that of BCO, which is to minimize the expected regret R(T)

R(T) = E
[ T∑

t=1

l̃t(It−d+1, ..., It)
]
− min

x∈{1,...,N }

T∑
t=1

l̃t(k, ..., k)

3.2 Background
In this section, we introduce the concept of strong convexity and smoothness. Besides, we will

introduce the basic procedure to transform a algorithm works on online convex optimization into one
works on bandit convex optimization.

3.2.1 Strong Convexity and Smoothness

As shown in the Chapter 4, we assume the loss functions to be smooth in Algorithm 4–6, and to
be smooth and strong convex in 4–9, respectively. That is why we will introduce theses concepts here.

Dcefinition 3.1.
[Strong Convexity] According to [28], we say that a function f : Rn → R is σ-strongly convex over
the set K if for all x, y ∈ K it holds that

f (y) ≥ f (x) + ∇ f (x)⊤(y − x) + σ
2
∥ x − y ∥2
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Dcefinition 3.2.
[Smoothness] According to [28], we say that a convex function f : Rn → R is β-smooth over the set
K if the following holds:

f (y) ≤ f (x) + ∇ f (x)⊤(y − x) + σ
2
∥ x − y ∥2

3.2.2 Self Concordant Barriers

Let K ∈ Rn be a convex set with a non empty interior int(K).

Dcefinition 3.3.
A function R : int(K) → R is called ν-self=concordant if:

1. R is three times continuously differentiable and convex, and approaches infinity along any
sequence of points approaching the boundary of K.

2. For every h ∈ Rn and x ∈ int(K) the following holds:

|∇3R(x)[h, h, h]| ≤ 2(∇2R(x)[h, h])3/2

and
|∇R(x)[h]| ≤ ν1/2(∇2R(x)[h, h])1/2

where
∇3R(x)[h, h, h] ≜= ∂3

∂t1∂t2∂t3
R(x + t1h + t2h + t3h)|t1=t2=t3=0

The Algorithm 4–4 and Algorithm 4–7 requires a ν-self-concordant barrier function over K.
There is a fact that any convex set in Rn admits a ν = O(n) barrier. The Hessian of a self-concordant
barrier induces a local norm at every x ∈ int(K), we denote this norm by ∥ · ∥x and its dual by ∥ · ∥∗x
and define ∀h ∈ Rn:

∥ h ∥x =
√

h⊤∇2R(x)h

∥ h ∥∗x =
√

h⊤(∇2R(x)−1)h

where we assume that ∇2R(x) always has a full rank.
Let R to be a self-concordant barrier and x ∈ int(K), then the Dikin Ellipsoide,

W1(x) = {y ∈ Rn |∥ y − x ∥x≤ 1}

which is the ∥ · ∥x-unit ball centered around x, is completely contained in K.

3.2.3 Reduction from BCO to OCO

In [17], the author summarized a general reduction from limited information to full information
as

1. One universal method for apply an OCO algorithm that relies only on the gradients of the loss
functions, to a set of random vector variables with designed sophisticated rule .

2. Constructing the random variables that will help the reduction template to reach small enough
regret bound.
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3.2.3.1 Using Unbiased Estimators

It is of significant importance to find an observable random variable gt that satisfies E[gt] ≈
∇ ft(xt) = ∇t for designing algorithm solving bandit convex optimization. Only by this way, gt can
be seen as an estimator of the gradient, such that we can substitute gt for ∇t in an OCO algorithm.
Besides, the family of regret minimization algorithms for which this reduction works is shown in the
following definition from [17].

Dcefinition 3.4.
[First order OCO Algorithm] Let A be an OCO (deterministic) algorithm receiving an arbitrary
sequence of differential loss functions f1, ..., fT , and producing decisions x←A(∅), xt ← A( f1, ..., ft1).
A is called a first order online algorithm if the following holds:
• The family of loss functions is closed under addition of linear functions: if f ∈ F0 and u ∈ Rn

then f + u⊤x ∈ F0.
• Let f̂t be the linear function f̂t = ∇ ft(xt)⊤x, then for every iteration t ∈ [T]:

A( f1, ..., ft−1) = A( f̂1, ..., f̂t−1)

And a formal reduction from any first order online algorithm to a bandit convex optimization
algorithm is also given in [17], which is shown in Algorithm 3–1

Algorithm 3–1 Reduction to bandit feedback.
Input: convex set K ⊂ Rn, first order online algorithm A.
Initialize: Let x1 = A(∅).

1: for t = 1 to T do
2: Generate distribution Dt , sample yt ∼ Dt with E[yt] = xt .
3: Play yt .
4: Observe ft(yt), generate gt with E[gt] = ∇ ft(xt).
5: Let xt+1 = A(g1, ..., gt).
6: end for

The reduction’s regret bounds can be given by the Lemma 6.4 from [17], which is restated in the
following:

Lemma 3.1.
Let u be a fixed point inK. Let f1, ..., fT : K → R be a sequence of differentiable functions. LetA be a
first order online algorithm that ensures a regret bound of the form RT (A) ≤ BA(∇ f1(x1), ...,∇ fT (xT ))
in the full information setting. Define the points {xt} as: x←A(∅), xt ← A(g1, ..., gt1) where each gt

is a vector valued random variable such that:

E[gt | x1, f1, ..., xt, ft] = ∇ ft(xt).
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Then the following holds fro all u ∈ K:

E[
T∑
t=1

ft(xt)] −
T∑
t=1

ft(u) ≤ E[BA(g1, ..., gT )].

Proof. Define the functions ht : K → R as follows:

ht(x) = ft(x) + ξ⊤t x,

where ξt = gt − ∇ ft(xt). Notice that

∇ht(xt) = ∇ ft(xt) + gt − ∇ ft(xt) = gt .

Therefore, deterministically applying a first order methodA on the random functions ht is equivalent
to applyingA on a stochastic first order approximation of the deterministic functions ft . Thus by the
full- information regret bound of A we have:

T∑
t=1

ht(xt) −
T∑
t=1

ht(u) ≤ BA(g1, ..., gT ). (3–2)

Also note that:

E[ht(xt)] = E[ ft(xt)] + E[ξtxt]

= E[ ft(xt)] + E[E[ξtxt | x1, f1, ..., xt, ft]]

= E[ ft(xt)] + E[E[ξt | x1, f1, ..., xt, ft]⊤xt]

= E[ ft(xt)].

where we used E[E[ξt | x1, f1, ..., xt, ft] = 0. Similarly, since u ∈ K is fixed we have that E[ht(u)] =
ft(u). The lemma follows from taking the expectation of Equation (3–2). □

3.2.3.2 Point-wise Gradient Estimators

In the preceding part we have described how to transform a first order algorithm for OCO to one
that for BCO, using specific random variables. We now describe how to design these vector random
variables. There are two estimators, i.e. the sphere sampling estimator and the ellipsoidal sampling
estimator.
• Sphere Estimator Let x ∈ Rn, and let Bδ and Sδ denote the n-dimensional ball and sphere

with radius δ:

Bδ = {x |∥ x ∥≤ δ}

Sδ = {x |∥ x ∥= δ}

We define f̂ (x) = f̂δ(x) to be a δ-smoothed version of f (x):

f̂δ(x) = Ev∈B[ f (x + δv)] (3–3)

where v is drawn uniform distribution over the unit ball. The following Lemma from [17]
gives the property of the sphere sampling estimator:
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Lemma 3.2.
Fix δ > 0. Let f̂ δ(x) be as defined in Eq. (3–3), and let u be a uniformly drawn unit vector
u ∼ S. Then

Ev∈B[ f (x + δv)] =
δ

n
∇ f̂δ(x).

• Ellipsoidal Estimator The sphere estimator above sometimes is difficult to apply if the center
of the sphere is very close to the boundary of the feasible set. Thus, it is necessary to consider
ellipsoidal estimators. The following corollary from [17] gives the property of the ellipsoidal
sampling estimator:

Corollary 3.1.
Consider a continuous function f : Rn → R, an invertible matrix A ∈ Rn×n, and let v ∼ Bn

and u ∼ Sn. Define the smoothed version of f with respect to A:

f̂ (x) = E[ f (x + Av)].

Then the following holds:
∇ f̂ (x) = nE[ f (x + Au)A−1u].
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Chapter 4 Algorithm Framework for Delayed and
Anonymous Feedback

In this chapter, we present our algorithm framework for bandit with delayed and anonymous
feedback. There are two algorithm frameworks, one for MAB problem and the other for BCO. The
procedure of two framework is almost the same. Specifically, we will be particularly interested on
the framework for BCO, because MAB problem can be regarded as a simplification of BCO. BCO is
more intractable and challenging. If we can solve a harder problem, there is no need to solve an easier
one again. The framework for MAB will be presented in Section 4.3 for the integrity of the thesis.
For both BCO and MAB, the instantiation of the algorithm framework will be given, in addition to
the algorithm framework itself.

4.1 Algorithm Framework for the Bandit Convex Optimization
In this section, we present our algorithm framework for bandit convex optimization whit delayed

and anonymous feedback, while the delay parameter d is unknown. Our algorithm framework can
transform a base algorithm for BCO into one that can be operated under the setting of delayed and
anonymous feedback while the delay parameter d is unknown. In this thesis, we assume the adversary
is oblivious, which means the loss function is determined before the game starts. In other words, the
adversary will not change no matter what action the player has taken. Our algorithm framework for
BCO in this case is shown in Algorithm 4–1.
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Algorithm 4–1 Algorithm framework for BCO with delayed and anonymous feedback (delay param-
eter d is unknown)
Input: Base BCO algorithm A with parameter h,T1,T .
Initialize: k = 1, t = 1,U = ∅.

1: Play any y1 ∈ Ω.
2: while t ≤ T do
3: dk ← h(Tk).
4: qk ← 1

2dk
.

5: Generate 2dk − 1 i.i.d. Bernoulli random variables Bt, ..., Bt+2dk−2 with parameter qk .
6: while t < Tk do
7: if t − 1 ∈ U then
8: play yt by randomly perturbing state variable xt .
9: else

10: yt ← yt−1.
11: end if
12: Generate Bernoulli random variable Bt+2dk−1 with parameter qk .
13: if Bt = 1, Bt+1 = ... = Bt−2dk+1 = 0 then
14: Set t ∈ U
15: Feed the base BCO algorithm with average composite loss

f̄t =
1

2dk

t∑
τ=t−dk+1

f ◦τ (yτ−dk+1, ..., yτ)

16: Use the update rule xt → xt+1 of base BCO to obtain the new state variable xt+1.
17: end if
18: t ← t + 1
19: end while
20: k ← k + 1
21: Tk ← 2Tk−1

22: end while

The algorithm has an outer loop. This loop decouples the algorithm framework into many rounds.
In the following, we will illustrate on intuit of designing the algorithm by two aspects of among phases
and within one phase, respectively.

4.1.1 Among Phases

Our algorithm framework extends the reduction in [11] to handle the setting where the delay
parameter d is unknown. The algorithm framework can run without the prior information about the
delay parameter d. Besides, it exploits a function h : N+ → N+ to make estimation on the precise
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value of the delay parameter d. Shortly speaking, we estimate the delay parameter d by d = h(T).
The estimated delay parameter in the k phase is dk with dk = h(Tk), while Tk/2 is the length of this
phase. The phase length in increased exponentially, i.e. Tk+1 = 2Tk . Thus, the k-th phase is exactly
round [Tk−1,Tk]. Within each phase, we just substitute the reduction from [11] to the algorithm in
each phase. The basic procedure described above is shown in Algorithm 4–2.

Algorithm 4–2 Algorithm framework among phases
Input: Base BCO algorithm A with parameter h,T1,T .
Initialize: k = 1, t = 1,U = ∅.

1: while t ≤ T do
2: dk ← h(Tk).
3: qk ← 1

2dk
.

4: Play any y1 ∈ Ω.
5: Reduction from [11] for phase k.
6: k ← k + 1
7: Tk ← 2Tk−1

8: end while

4.1.2 Within One Phase

Within each phase, our algorithm framework adopts a similar procedure as that of the work in
[11]. Specifically, [11] proposed a reduction based on a randomized approach. The basic ideal is
to split the game into many rounds. Within each round, only partial information is exploited. The
stochasticity ensure that the expected payoff in each time slot is the same, regardless of whether it is
considered in the algorithm or not. This is the main trick of the reduction in [11].

The algorithm within one phase is the same as that of [11], where the authors named it as
“Composite Loss Wrapper” algorithm, as shown in Algorithm 4–3. Here the base BCO algorithm
works on normal losses within [0, 1], producing state variable xt on the feasible set K. Algorithm
4–3 produces a sequence of i.i.d. Bernoulli random variables, B0, ..., BT , with parameter q. There are
three kind of rounds in Algorithm 4–3, i.e. update round, silent round, random round.
• Update round: In this round, the state variable is updated by the rule of the base BCO algorithm

by xt → xt+1. The chosen action is the same as the last time slot, i.e. yt = yt−1.
• Silent round: In this round, the state variable xt remain unchanged, and the chosen action is

the same as last time slot, which is given by yt = yt−1.
• Random round: In this round, the chosen action yt is generated by randomly perturbing state

variable xt .

– Page 19 of 59 –



Multi-armed Bandits in Versatile Settings

Algorithm 4–3 The Composite Loss Wrapper for BCO.
Input: Base BCO algorithm A with parameter η ∈ (0, 1].
Initialize: t = 1,U = ∅.

1: Play any y1 ∈ Ω.
2: Generate 2d − 1 i.i.d. Bernoulli random variables Bt, ..., Bt+2d−2 with parameter q.
3: while t ≤ T do
4: if t − 1 ∈ U then
5: play yt by randomly perturbing state variable xt .
6: else
7: yt ← yt−1.
8: end if
9: Generate Bernoulli random variable Bt+2d−1 with parameter q.

10: if Bt = 1, Bt+1 = ... = Bt−2d+1 = 0 then
11: Set t ∈ U
12: Feed the base BCO algorithm with average composite loss

f̄t =
1

2d

t∑
τ=t−d+1

f ◦τ (yτ−d+1, ..., yτ)

13: Use the update rule xt → xt+1 of base BCO to obtain the new state variable xt+1.
14: end if
15: t ← t + 1
16: end while

4.2 Instantiation of Algorithm Framework (BCO)
In this section, we substitute two base algorithm for bandit convex optimization into the algorithm

framework in Algorithm 4–1. The first base BCO algorithm is proposed in [29]. This algorithm is
designed to solve BCO with adversary having smooth convex loss functions, and reaches expected
regret of O(T2/3), ignoring constant and logarithmic factors. This algorithm is not the optimal
algorithm. Then in [19], the authors proposed an algorithm for BCO with adversary having smooth
and strong convex loss. It is worth to mention that this algorithm reaches O(

√
T) regret upper bound,

which is optimal. Because the regret lower bound for BCO has been proved to be Ω(
√

T) in [18].

4.2.1 A Basic BCO Algorithm

At first, we give the base bandit algorithm from [29] in Algorithm 4–4.

– Page 20 of 59 –



Multi-armed Bandits in Versatile Settings

Algorithm 4–4 Bandit OCO Algorithm for Smooth Functions
Input: η > 0, δ ∈ [0, 1], ν-self-concordant barrier R.
Initialize: Choose x1 ∈ K randomly.

1: for t=1,2,...,T do
2: Define At = (∇2R(xt))−1/2.
3: Draw ut ∼ Sn uniformly at random.
4: yt = xt + δAtut

5: Play yt and receive ft(y)t ∈ R.
6: gt =

n
δ

ft(yt)A−1
t ut .

7: Update xt+1 = arg minx∈K η
∑t

τ=1 g
⊤
τ x + R(x).

8: end for

Like common bandit algorithms, Algorithm 4–4 is based on the estimation gradient and then
passing the estimated gradient to a full information algorithm. The underlying full information
algorithm is an algorithm from [30], which is given in Algorithm 4–5.

Algorithm 4–5 Bandit Online Linear Optimization
Input: η > 0, ν-self-concordant barrier R.
Initialize: Choose x1 = arg minx∈K R(x).

1: for t=1,2,...,T do
2: Let {e1, ..., en} and {λ1, ..., λn} be the set of eigenvectors and eigenvalues of ∇2R(xt).
3: Choose it uniformly at random from {1, ..., n} and ϵt = ±1 with probability 1/2.
4: Predict yt = xt + ϵλ

−1/2
it

eit .
5: Observe the gain f⊤t yt ∈ R.
6: Define f̃t = n(f⊤t yt)ϵtλ1/2

it
· ei)t .

7: Update

xt+1 = arg min
x∈K
[η

t∑
τ=1

f̃⊤t x + R(x)]

.
8: end for

Theorem 4.1.
Let the set K have diameter D. Suppose we run Algorithm 4–4 against an arbitrary sequence of
functions ft all drawn from smooth set and bounded by C. Then, for appropriate choices of the
parameters η, δ, the expected regret is bounded as:

R(T) ≤ 3(Hν logT)1/3(CdD)2/3T2/3 + (2C
D +DH)

√
T = O(T2/3(logT)1/3)

Then, we are ready to give the algorithm for BCO with delayed and anonymous feedback where
the delay parameter d is unknown with base algorithm by Algorithm 4–4. The full algorithm is given
in Algorithm 4–6. The analysis of this algorithm is in next chapter.
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Algorithm 4–6 Algorithm for BCO with delayed and anonymous feedback (basic version)
Input: Base BCO algorithm A with parameter h,T1,T .
Initialize: k = 1, t = 1,U = ∅.

1: Play any y1 ∈ Ω.
2: while t ≤ T do
3: dk ← h(Tk).
4: qk ← 1

2dk
.

5: Generate 2dk − 1 i.i.d. Bernoulli random variables Bt, ..., Bt+2dk−2 with parameter qk .
6: while t < Tk do
7: if t − 1 ∈ U then
8: play yt by randomly perturbing state variable xt .
9: else

10: yt ← yt−1.
11: end if
12: Generate Bernoulli random variable Bt+2dk−1 with parameter qk .
13: if Bt = 1, Bt+1 = ... = Bt−2dk+1 = 0 then
14: Set t ∈ U
15: Feed the algorithm by [29] with average composite loss

f̄t =
1

2dk

t∑
τ=t−dk+1

f ◦τ (yτ−dk+1, ..., yτ)

and set the parameter as ηk = O
(
( 2dk log(Tk /(2dk ))

nTk
)2/3

)
.

16: Use the update rule xt → xt+1 of base BCO to obtain the new state variable xt+1.
17: end if
18: t ← t + 1
19: end while
20: k ← k + 1
21: Tk ← 2Tk−1

22: end while

4.2.2 An Optimal BCO Algorithm

If we replace the base BCO algorithm in Algorithm 4–6 by the algorithm proposed in [19], the
regret of the new algorithm, i.e. the Algorithm 4–9 in the following, will reach a better regret upper
bound. The algorithm proposed in [19] is given Algorithm 4–8.
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Algorithm 4–7 BCO Algorithm for Str.-convex & Smooth losses
Input: η > 0, σ > 0, ν-self-concordant barrier R.
Initialize: Choose x1 = arg minx∈K R(x).

1: for t=1,2,...,T do
2: Define Bt = (∇2R(xt) + ησtI)−1/2.
3: Draw ut ∼ Sn.
4: Play yt = xt + Btut .
5: Observe ft(xt + Btut) and define gt = n ft(xt + Btut)B−1

t ut .
6: Update xt+1 = arg minx∈K η

∑t
τ=1{g⊤τ x + σ

2 ∥ x − xτ ∥} + R(x).
7: end for

Just as that stated in [19], Algorithm 4–7 shrinks the exploration magnitude with time due to the
strong-convexity of the loss functions. In fact, it follows a full-information first-order algorithm for
online convex optimization, which is given in Algorithm 4–8, denoted as FTARL-σ.

Algorithm 4–8 FTARL-σ
Input: η > 0, ν-self-concordant barrier R.
Initialize: Choose x1 = arg minx∈K R(x).

1: for t=1,2,...,T do
2: Receive ∇ht(xt).
3: Update xt+1 = arg minx∈K η

∑t
τ=1{∇ht(xt)⊤x + σ

2 ∥ x − xτ ∥} + R(x).
4: end for

Algorithm 4–8 is a variant of the FTRL algorithm, which is given in [31]. The following theorem
is given in [19].

Theorem 4.2.
Let K be a convex set with diameter D and R be a ν-self-concordant barrier over K. Then in the
BCO setting where the adversary is limited to choosing β-smooth and σ-strongly- convex functions
and | ft(x)| ≤ L, ∀x ∈ K, then the expected regret of Algorithm 4–4 with η =

√
(ν+2β/σ) logT

2n2L2T
is upper

bounded as

R(T) ≤ 4nL

√
(ν + 2β

σ
)T logT + 2L +

βD2

2
= O(

√
βν

σ
T logT)

whenever T/logT ≥ 2(ν + 2β/σ).

Then, we are ready to give the algorithm for BCO with delayed and anonymous feedback where
the delay parameter d is unknown with base algorithm by Algorithm 4–7. The full algorithm is given
in Algorithm 4–9. The analysis of this algorithm is in next chapter.
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Algorithm 4–9 Algorithm for BCO with delayed and anonymous feedback (optimal version)
Input: Base BCO algorithm A with parameter h,T1,T .
Initialize: k = 1, t = 1,U = ∅.

1: Play any y1 ∈ Ω.
2: while t ≤ T do
3: dk ← h(Tk).
4: qk ← 1

2dk
.

5: Generate 2dk − 1 i.i.d. Bernoulli random variables Bt, ..., Bt+2dk−2 with parameter qk .
6: while t < Tk do
7: if t − 1 ∈ U then
8: play yt by randomly perturbing state variable xt .
9: else

10: yt ← yt−1.
11: end if
12: Generate Bernoulli random variable Bt+2dk−1 with parameter qk .
13: if Bt = 1, Bt+1 = ... = Bt−2dk+1 = 0 then
14: Set t ∈ U
15: Feed the algorithm by [19] with average composite loss

f̄t =
1

2dk

t∑
τ=t−dk+1

f ◦τ (yτ−dk+1, ..., yτ)

and set the parameter as ηk = O
(
( 2dk log(Tk /2dk )

nTk
)2/3

)
.

16: Use the update rule xt → xt+1 of base BCO to obtain the new state variable xt+1.
17: end if
18: t ← t + 1
19: end while
20: k ← k + 1
21: Tk ← 2Tk−1

22: end while

Algorithm 4–7 works under the assumption of β-smooth and σ-strongly-convex functions. It
updates according to a full-information first-order algorithm denoted FTARL-σ. This algorithm is a
variant of the FTRL methodology as defined in [29]. The algorithm takes in input a learning rate η, a
convexity parameter σ > 0, and a ν-self-concordant (barrier) function R. The algorithm maintains at
each round t the state variable xt ∈ K, of the form

xt = arg min
x∈K
η

t∑
s=1

(g⊤s x +
σ

2
∥ x − xs ∥2) + R(x) (4–1)

Then, it computes a perturbed version yt of xt as yt = xt + Btut , where Bt is the Hessian matrix
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(∇2R(xt + ησtI))−1/2, and st is drawn uniformly at random from the surface of the Euclidean n-
dimensional unit ball Bn. The update xt → xt+1 amounts to computing the next vector gt in Eq. (4–1)
as gt = n ft(yt)B−1

t ut , an unbiased estimate of the gradient at xt of a smoothed version of ft . From
[19] one can bound

R(T, n, η) ≤ 2ηTn2 +
logT
η
(ν + 2β

σ
) + 2 +

βD2

2

4.3 Algorithm Framework for Multi-armed Bandit Problem
In this section, we present our algorithm framework for Multi-armed bandit problem whit delayed

and anonymous feedback, while the delay parameter d is unknown.1 Our algorithm framework can
transform a base algorithm for MAB into one that can be operated under the setting of delayed and
anonymous feedback while the delay parameter d is unknown. In this thesis, we assume the adversary
is oblivious, which means the reward vector is determined at the beginning of the game. In other
words, the adversary will not change no matter what action the player has taken. Our algorithm
framework for MAB in this case is shown in Algorithm 4–10.

1This part of the work is first proposed by [32], Thus, it is listed here for purpose of the integrity of the thesis, but not the contribution of
the authors’ of this thesis.
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Algorithm 4–10 Algorithm framework for MAB with delayed and anonymous feedback (delay pa-
rameter d is unknown)
Input: Base BCO algorithm A with parameter h,T1,T .
Initialize: k = 1, t = 1,U = ∅.

1: Draw a0 from the uniform distribution p1 over {1, ...,K}.
2: while t ≤ T do
3: dk ← h(Tk).
4: qk ← 1

2dk
.

5: Generate 2dk − 1 i.i.d. Bernoulli random variables Bt, ..., Bt+2dk−2 with parameter qk .
6: while t ≤ T do
7: if t − 1 ∈ U then
8: Draw at ∼ pt and play it without updating pt (pt+1 = pt).
9: else

10: at ← at−1.
11: end if
12: Generate Bernoulli random variable Bt+2d−1 with parameter q.
13: if Bt = 1, Bt+1 = ... = Bt−2dk+1 = 0 then
14: Set t ∈ U
15: Feed the base MAB algorithm with average composite loss

l̄t =
1

2d

t∑
τ=t−d+1

l◦τ (aτ−d+1, ..., aτ)

16: Use the update rule pt → pt+1 of base MAB to obtain the new distribution pt+1.
17: end if
18: t ← t + 1
19: end while
20: k ← k + 1
21: Tk ← 2Tk−1

22: end while

The algorithm has an outer loop. This loop decouples the algorithm framework into many rounds.
In each round, the algorithm follows the procedure of Algorithm 1 in [11], which shown in Algorithm
4–11.
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Algorithm 4–11 The Composite Loss Wrapper for MAB.
Input: Base BCO algorithm A with parameter η ∈ (0, 1].
Initialize: t = 1,U = ∅.

1: Draw a0 from the uniform distribution p1 over {1, ...,K}.
2: Generate 2d − 1 i.i.d. Bernoulli random variables Bt, ..., Bt+2d−2 with parameter q.
3: while t ≤ T do
4: if t − 1 ∈ U then
5: Draw at ∼ pt and play it without updating pt (pt+1 = pt).
6: else
7: at ← at−1.
8: end if
9: Generate Bernoulli random variable Bt+2d−1 with parameter q.

10: if Bt = 1, Bt+1 = ... = Bt−2d+1 = 0 then
11: Set t ∈ U
12: Feed the base MAB algorithm with average composite loss

l̄t =
1

2d

t∑
τ=t−d+1

l◦τ (aτ−d+1, ..., aτ)

13: Use the update rule pt → pt+1 of base MAB to obtain the new distribution pt+1.
14: end if
15: t ← t + 1
16: end while

Remark 4.1.
The algorithm framework for MAB with delayed and anonymous feedback while the delay parameter
d is unknown can be regarded as simplification of the algorithm framework for BCO in the same
feedback setting. Thus, we need not to repeat the analysis as well as algorithm instantiation again.
However, these part will be given in the following section, for the sake of integrity of the paper. The
algorithm framework with respect to MAB is first proposed in [32].

4.3.1 Instantiation of Algorithm Framework (MAB)

We substitute Exp3 [14] in Algorithm 4–10 to get an instantiation of algorithm framework
for MAB with delayed and anonymous feedback while the delay parameter d is unknown. The
instantiation is shown in Algorithm 4–13. At first the Exp3 algorithm is shown in Algorithm 4–12.
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Algorithm 4–12 Algorithm Exp3
Input: Real γ ∈ (0, 1].
Initialize: ωi(1) = 1 for i = 1, ..., N ,

1: for t=1,2,...,T do
2: Set

pi(t) = (1 − γ)
ωi(t)∑N
j=1 wj(t)

+
γ

N
, i = 1, ..., N

3: Draw it randomly accordingly to the probabilities p1(t), ..., pN (t).
4: Receive reward xit (t) ∈ [0, 1].
5: for j = 1, ..., N do
6: Set

x̂j(t) =


xj(t)/pj(t), if j = it .

0, otherwise.

ωj(t + 1) = ωj(t) exp(γ x̂j(t)/K)

7: end for
8: end for

The regret bound of Exp3 algorithm can be given in Theorem 3.1 from [14], which is shown in
the following:

Theorem 4.3.
For any N > 0 and for any γ ∈ (0, 1]

Gmax − E[GExp3] ≤ (e − 1)γGmax +
NlnN

T

holds for any assignment of rewards and for any T > 0.

Moreover, the Corollary 3.2 in [14] bound the regret of Exp3 algorithm explicitly in the following:

Corollary 4.1.
For any T > 0, assume that g ≤ Gmax and that algorithm Exp3 is run with input parameter

γ = min
{
1,

√
N ln N
(e − 1)g

}
.

Then
Gmax − E[GExp3] ≤ 2

√
e − 1

√
gN ln N ≤ 2.63

√
gN ln N .

Then the Algorithm 4–10 with base Algorithm 4–12 is shown in the following:
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Algorithm 4–13 Algorithm for MAB with delayed and anonymous feedback (Exp3 version)
Input: Base BCO algorithm A with parameter h,T1,T .
Initialize: k = 1, t = 1,U = ∅.

1: Draw a0 from the uniform distribution p1 over {1, ...,K}.
2: while t ≤ T do
3: dk ← h(Tk).
4: qk ← 1

2dk
.

5: γk =
√

2dkN log N

Tk+dk
.

6: Generate 2dk − 1 i.i.d. Bernoulli random variables Bt, ..., Bt+2dk−2 with parameter qk .
7: while t ≤ T do
8: if t − 1 ∈ U then
9: Draw at ∼ pt and play it without updating pt (pt+1 = pt).

10: else
11: at ← at−1.
12: end if
13: Generate Bernoulli random variable Bt+2d−1 with parameter q.
14: if Bt = 1, Bt+1 = ... = Bt−2dk+1 = 0 then
15: Set t ∈ U
16: Update pt using Exp3 policy by pulling arm at and obtain reward

1
2dk

t∑
τ=t−d+1

l◦τ (aτ−d+1, ..., aτ)

.
17: end if
18: t ← t + 1
19: end while
20: k ← k + 1
21: Tk ← 2Tk−1

22: end while
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Chapter 5 Regret Analysis

In this chapter, we present our analysis on the algorithm framework for bandit with delayed
and anonymous feedback. There are two algorithm frameworks, one for MAB problem and the
other for BCO. The procedure of analysis on MAB and BCO is almost the same. Specifically, we
will be particularly interested on the analysis for BCO, because MAB problem can be regarded as
a simplification of BCO. BCO is more intractable and challenging. If we can give analysis on a
harder problem, there is no need to analyze an easier one again. The analysis for BCO and MAB will
be presented in Section 5.1 and Section 5.2, respectively, for the integrity of the thesis. For bandit
convex optimization, both the analysis for basic version algorithm and optimal version algorithm will
be given.

5.1 Bandit Convex Optimization
5.1.1 Basic Algorithm

The proof of Theorem 5.1 follows a similar procedure as the proof of Theorem 3 in [32].

Theorem 5.1.
If h : N+ → N+ is an increasing function such that h(T) = o(T) holds for any T , and

1. for some constant L ≥ 0, the loss functions f1, ..., fT are L-Lipschitz on Ω w.r.t. ∥ · ∥,
2. for some constant β ≥ 0, the loss functions f1, ..., fT are β-smooth w.r.t. ∥ · ∥,

then Algorithm 4–6 satisfies

R(T) = O
(
(h(2T) log(T/h(2T)))1/3(nT)2/3 +

√
h(2T)T + h−1(d)

)
Proof. Let k0 be the first round that dk0 ≥ d. Then, Tk0 satisfies h(Tk0−1) < d. Since h is an increasing
function, h−1 is also increasing. Thus, Tk0−1 < h−1(d), which implies Tk0 < 2h−1(d).

We now ignore the phases before k0, as these time steps will have an additional regret of at most
2h−1(d). Consider the phases with dk ≥ d. Notice that from Corollary 15 in [11], each phase k has
regret O

(
(dk log(tk/dk))1/3(ntk)2/3+

√
dk tk

)
, where tk = Tk/2 is the number of time steps in this phase.

Specifically, Corollary 15 in [11] is given in the following:

Corollary 5.1.
If Algorithm 4–3 is run with the Algorithm 4–4 by [29] as Base BCO algorithm, with η =
O
( ( d log(T/d)

nT

)2/3
)

and δ = O(η1/4n1/2), then its regret for BCO with d-delayed composite anonymous
feedback satisfies

R(T) = O
( (

d log(T/d)1/3
)
(nT)2/3 +

√
dT

)
where the O notation in the tuning of η, δ and in the bound on R(T) hides the constants β, D and ν.
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Then, the total regret in these phases is upper bounded by:

K∑
k=k0

O
(
(dk log(tk/dk))1/3(ntk)2/3 +

√
dk tk

)
≤ O

(
(dK log(tK/dK ))1/3(ntK )2/3 +

√
dK tK

)
where K is the last phase number.

From the description of Algorithm 4–6, we have that tK ≤ T and dK ≤ h(2T). Thus, the total
regret of Algorithm 4–6 satisfies R(T) ≤ O

(
(h(2T) log(T/h(2T)))1/3(nT)2/3+

√
h(2T)T + h−1(d)

)
. □

Remark 5.1.
Surprisingly, since the last term of regret of Theorem 5.1 does not depend on T, our regret bound
can be arbitrary close to the regret lower bound given in [11], by restricting the increasing rate of
h, without using any prior information on d. However, a small increasing rate of the round size
will causes a large regret before we have dk ≥ d. In fact, the regret bound can be compressed
to Θ(T2/3+ϵ (logT1−ϵ )1/3), which is quit close as the case of convex and smooth losses in [29], who
attained an upper bound ofΘ(T2/3(logT)2/3). This tells us the regret loss in anonymous and composite
feedback is O(h−1(d)).

5.1.2 Optimal Algorithm

It should be noted that the Theorem 5.2 is from Theorem 2.2 in [17].

Theorem 5.2 (Karush-Kuhn-Tucker).
Let K ⊆ Rd be a convex set, x∗ ∈ arg minx∈K f (x). Then for any y ∈ K we have

∇ f (x∗)⊤(y − x∗) ≥ 0.

Proof. The generalization of the fact that a minimum of a convex differentiable function on Rn is
a point in which its derivative is equal to zero, is given by the multi-dimensional analogue that its
gradient is zero:

∇ f (x) = 0⇔ x ∈ arg min
x∈Rn

f (x).

We will require a slightly more general, but equally intuitive, fact for constrained optimization: at a
minimum point of a constrained convex function, the inner product between the negative gradient and
direction towards the interior of K is non-positive. This is depicted in Figure 5–1, which shows that
∇ f (x∗) defines a supporting hyperplane to K. The intuition is that if the inner product were positive,
one could im- prove the objective by moving in the direction of the projected negative gradient. This
fact is stated formally in the above theorem.
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Figure 5–1 Optimality conditions: negative sub-gradient pointing outwards.2

□

Lemma 5.1.

∥ xt − xt+1 ∥= O(ηn)

Proof. The proof is similar as that of the proof of Lemma 14 in [11]. Consider the Bregman divergence
associated with the (strongly convex) barrier function

BR(x| |y) = R(x) − R(y) − ∇R(y)⊤(x − y).

Recall that R(x) is a convex function and K is a convex set. Denote:

Φt(x) ≜
{
η

t∑
s=1

(g⊤s x +
σ

2
∥ x − xs ∥2) + R(x)

}
For twice differentiable functions, by the mean-value theorem, the Taylor expansion shows that the
Bregman divergence is the same as the second derivative at an intermediate point, i.e.,

BR(x| |y) =
1
2
∥ x − y ∥z

for z ∈ [x, y], or z = αx + (1 − α)y for α ∈ [0, 1].
By the Taylor expansion (with its obvious remainder term through the mean-value theorem) at

xt+1, and by the definition of the Bregman divergence,

Φt(xt) = Φt(xt+1) + (xt − xt+1)⊤∇Φt(xt+1) + BΦt
(xt | |xt+1)

≥ Φt(xt+1) + BΦt
(xt | |xt+1) (5–1)

2Fig. 5–1 is from Fig. 2.2 in [17]
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The inequality holds because xt+1 is a minimum point of Φt over K, as in Theorem 5.2. Denote

Ψt(x) ≜
{
η

t∑
s=1

σ

2
∥ x − xs ∥2 +R(x)

}
Then,

BΨt
(xt | |xt+1) − BR(xt | |xt+1)

= η

t∑
s=1

σ

2
∥ xt − xs ∥2 −η

t∑
s=1

σ

2
∥ xt+1 − xs ∥2 −η

t∑
s=1

σ(xt+1 − xs)⊤(xt − xt+1)

=
ησ

2

t∑
s=1

(
(xt − xs)⊤(xt − xs) − (xt+1 − xs)⊤(xt+1 − xs) − 2(xt+1 − xs)⊤(xt − xt+1)

)
=
ησ

2

t∑
s=1

(
(xt − xs)⊤(xt − xs) − (xt+1 − xs)⊤(xt − xs) − (xt+1 − xs)⊤(xt − xt+1)

)
=
ησ

2

t∑
s=1

(
(xt − xt+1)⊤(xt − xs) − (xt+1 − xs)⊤(xt − xt+1)

)
=
ησ

2

t∑
s=1

(xt − xt+1)⊤(xt − xt+1)

=
ησt
2
∥ xt − xt+1 ∥2

Thus, we have

BΦt
(xt | |xt+1) = BΨt

(xt | |xt+1) = BR(xt | |xt+1) +
ησt
2
∥ xt − xt+1 ∥2 (5–2)

The first equality holds because the term g⊤s x is linear and thus does not have effect on the Bregman
divergence. Combine Eq. (5–1) with Eq. (5–2), we have

BR(xt | |xt+1) ≤ Φt(xt) − Φt(xt+1) −
ησt
2
∥ xt − xt+1 ∥2

= (Φt−1(xt) − Φt−1(xt+1)) + ηg⊤t (xt − xt+1) −
ησ(t + 1)

2
∥ xt − xt+1 ∥2

≤ (Φt−1(xt) − Φt−1(xt+1)) + ηg⊤t (xt − xt+1)

≤ ηg⊤t (xt − xt+1) (5–3)

The last inequality holds since xt is the minimizer.
Denote the norm produced by the Bregman divergence with respect to R on point xt , xt+1 as

∥ · ∥t=∥ · ∥xt,xt+1 . The case is similar for the dual local norm ∥ · ∥∗t =∥ · ∥∗xt,xt+1
. By this notation, we

have BR(xt | |xt+1) = 1
2 ∥ xt − xt+1 ∥2t . The generalized Cauchy-Schwarz theorem asserts

⟨x, y⟩ ≤∥ x ∥∥ y ∥∗

and in particular for matrix norms,
⟨x, y⟩ ≤∥ x ∥A∥ y ∥∗A
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where A is a positive definite matrix and ∥ x ∥A=
√

x⊤Ax. The dual norm of a matrix norm is
∥ x ∥∗A=∥ x ∥A−1 .

Then, with the generalized Cauchy-Schwarz inequality, we have

g⊤t (xt − xt+1) ≤∥ gt ∥∗t · ∥ xt − xt+1 ∥t (5–4)

To find the range of the last equation, we use Lemma 6.9 in [17], and the definition of xt =

arg minx∈K Φt(x) where

Φt(x) ≜
{
η

t∑
s=1

(g⊤s x +
σ

2
∥ x − xs ∥2) + R(x)

}
is a self-concordant barrier. Here Lemma 6.9 in [17] is restated in Lemma 5.2.

Lemma 5.2.
Let x ∈ int(K) be such that ∥ ∇R(x) ∥∗x≤ 1

4 , and let x∗ = arg minx∈K R(x). Then

∥ x − x∗ ∥x≤ 2 ∥ ∇R(x) ∥∗x

Thus,

∥ xt − xt+1 ∥t≤ 2 ∥ ∇Φt(xt) ∥∗t = 2 ∥ ∇Φt−1(xt) + ηgt ∥∗t = 2η ∥ gt ∥∗t (5–5)

since Φt−1(xt) = 0 by definition of xt . Recall that to use Lemma 6.9 in [17], we need ∥ ∇Φt(xt) ∥∗t =
η ∥ gt ∥∗t ≤ 1

4 , which is true by choice of η and since

∥ gt ∥∗t 2 ≤ n2u⊤A−⊤t ∇−2R(xt)A−1
t u ≤ n2

By the strong convexity of Φt w.r.t. ∥ · ∥ we have

BΦt
(xt | |xt+1) ≥

α

2
∥ xt − xt+1 ∥2

for some constant α > 0. Moreover, one can show that E[∥ gt ∥∗t 2 |xt] ≤ n2 from Lemma 11 in [19],
which is restated in Lemman 5.3.

Lemma 5.3.
LetR be a self-concordant barrier over a convex setK, and η > 0. Consider an online player receiving
σ-strongly-convex loss functions h1, ..., hT and choosing points according to FTARL-σ (Algorithm
4–8), and η ∥ ∇ht(xt) ∥∗t ≤ 1/2, ∀t ∈ [T]. Then the player’s regret is upper bounded as follows:

T∑
t=1

ht(xt) −
T∑
t=1

ht(ω) ≤ 2η
T∑
t=1

(∥ ∇ht(xt) ∥∗t )2 + η−1R(ω), ∀z ∈ K

where (∥ a ∥∗t )2 = a⊤(∇2R(xt) + ησtI)−1a

Put Eq. (5–4) and (5–5) together in Eq. (5–3) gives

∥ xt − xt+1 ∥= O(ηn)

where the O notation hides here the inverse dependence on α. □

– Page 34 of 59 –



Multi-armed Bandits in Versatile Settings

The notion of stability of the Base BCO has now to refer also to the sequence of loss functions
the algorithm is operating with. We have to consider only the positive part of the backward difference.
The following definition of ξ-stable is first given in [11], which modified in this paper and given here
as ξ(t)-stable.

Dcefinition 5.1.
LetA(η) be a Base BCO with learning rate η, and {yt}Tt=1 be the sequence of plays produced byA(η)
during a run over T rounds on the sequence of convex losses { ft}Tt=1. We say that A(η) is ξ(t)-stable
w.r.t. { ft}Tt=1 if for any round t we have that[

E
[

ft+1(yt+1) − ft+1(yt)
] ]
+
≤ ξ(t)

where ξ(t) is a function of t.

Lemma 5.4.
Let f1, ..., fT : Ω ⊆ Rn → [0, 1] be a sequence of β-smooth convex losses w.r.t. ∥ · ∥, and D be the
diameter of x. Then the Base BCO algorithm by [19] is ξ-stable, with ξ(t) = O

((
1
D +Dβ

)
ηn+ β

ησ(t+1)

)
.

Proof. Since f : Ω→ [0, 1] is β-smooth w.r.t. ∥ · ∥, then

f (y) ≤ f (x) + ∇ f (x)⊤(y − x) + β
2
∥ y − x ∥2 .

Let Et[·] denote expectation conditioned on all random events up tp time t −1. Then, by the convexity
of ft+1, we have

E[ ft+1(yt)] = E
[
Et[ ft+1(yt)]

]
≥ E

[
ft+1(Et[yt])

]
= E

[
ft+1(Et[xt])

]
= E[ ft+1(xt)].

The next equation holds by the remark that follows Lemma 7 and by the lemma itself in [19]:

E[ ft(yt) − ft(xt)] = E
[
Eut
[ ft(xt + Btut)] − ft(xt)|xt

]
≤ β

2
E[∥ B2

t ∥] ≤
β

2ησt
,

where Lemma 7 and the following remark in [19] are given in the following:

Lemma 5.5.
Consider a function f : Rn → R, and a positive definite matrix A ∈ Rn×n . Let f̂ be the smoothed
version of f with respect to A as defined in Equation (3–3). Then the following holds:
• If f is σ-strongly convex then so is f .
• If f is convex and β-smooth, and λmax be the largest eigenvalue of A.

Then:
0 ≤ f̂ (x) − f (x) ≤ β

2
∥ A2 ∥2=

β

2
λ2

max

Remark 5.2.
Lemma 7 also holds if we define the smoothed version of f as f (x) = Eu∼Sn [ f (x+Au)], i.e. an average
of the original function values over the unit sphere rather than the unit ball as defined in Equation
(3–3). Proof is similar to the one of Lemma 7.
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Thus,
E[ ft+1(yt+1) − ft+1(xt+1)] ≤

β

2ησ(t + 1)
Putting together, we have so far obtained[

E[ ft+1(yt+1) − ft+1(yt)]
]
+
≤

[
E[ ft+1(xt+1) − ft+1(xt)] +

β

2ησ(t + 1)
]
+

≤
[
E[ ft+1(xt+1) − ft+1(xt)]

]
+
+

β

2ησ(t + 1) (5–6)

where we have further used the fact that [a]+ is nondecreasing in a ∈ R, and that [a+ b]+ ≤ [a]++ [b]+
for all a, b ∈ R.

Since ft is [0,1]-bounded and β-smooth on a set of diameterD, it must be that ft is also Lipschitz
with constant L ≤ 2

D +Dβ, so that combining with (5–6) and Lemma 5.1 yields[
E[ ft+1(yt+1) − ft+1(yt)]

]
+
≤ ( 2
D +Dβ)E[∥ xt+1 − xt ∥] +

β

2ησ
= O

(( 1
D +Dβ

)
ηn +

β

ησ(t + 1)
)
□

Theorem 5.3.
If Algorithm 2 in [11] is run with the above mentioned Algorithm 4–7 with η = O

(√
d log(T/d)

n2T

)
, then

its regret for the BCO setting where the adversary is limited to choosing β-smooth and σ-strongly-
convex functions with d-delayed composite anonymous feedback satisfies

R(T) =

O
(√

d log(T/d)T + d
)
, if d > n.

O
(
n

√
T log(T/d)

d
+ d

)
, otherwise.

(5–7)

where the O notation in the tuning of η and in the bound on R(T) hides the constants β, D, ν and σ.

Proof. From the proof of Theorem 13 in [11], we have

E
[

f ◦t (yt−d+1, ..., yt) − f ◦t (yt−d+1, ..., yt−d+1)
]

= E
[ d−1∑
s=0

(
f (s)t−s(yt−s) − f (s)t−s(yt−d+1)

) ]
=

d−1∑
s=0

[
E[ f (s)t−s(yt−s) − f (s)t−s(yt−d+1)]

]
+

≤ ξ(t)

since there is at most one update of the underlying state variable xt (which in turn determines the
distribution of the corresponding yt) during the rounds from t − d + 1 to t, and Base BCO is assumed
to be ξ(t)-stable in the sense of Definition 5.1. Piecing together as in the proof of Theorem 2 in [11],
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we have

R(T) ≤ E
[ T∑

t=1

f ◦t (yt−d+1, ..., yt)
]
−

T∑
t=1

f ◦t (x, ..., x)

= E
[ T∑

t=1

f ◦t (yt−d+1, ..., yt) −
T∑
t=1

f ◦t (yt−d+1, ..., yt−d+1)
]

+ E
[ T∑

t=1

f ◦t (yt−d+1, ..., yt−d+1)
]
−

T∑
t=1

f ◦t (x, ..., x)

≤
T∑
t=1

ξ(t) + 8(2d − 1)RA(T/2d,K, η) + O(d)

=

T∑
t=1

O
(( 1
D +Dβ

)
ηn +

β

ησ(t + 1)
)
+ 8(2d − 1)

(ηn2T
d
+

log( T2d )
η
(ν + 2β

σ
) + 2 +

βD2

2

)
+ O(d)

= O
(( 1
D +Dβ

)
ηnT +

T∑
t=1

β

ησ(t + 1)
)
+ 8(2d − 1)

(ηn2T
d
+

log( T2d )
η
(ν + 2β

σ
) + 2 +

βD2

2

)
+ O(d)

= O
(( 1
D +Dβ

)
ηnT +

β logT
ησ

)
+ 8(2d − 1)

(ηn2T
d
+

log( T2d )
η
(ν + 2β

σ
) + 2 +

βD2

2

)
+ O(d)

= O
(
ηnT + ηn2T +

logT
η
+

d log( T2d )
η

+ d
)
,

where the last equality follows the fact that β,D, σ, ν are regarded as constants.
Take η = O

(√
d log(T/d)

n2T

)
, we get R(T) = O

(√
d log(T/d)T + n

√
T log(T/2d)

d
+ d

)
and Eq. (5–7) can

be get easily. □

Theorem 5.4.
If Algorithm 4–6 is run with the above mentioned Algorithm 4–7 as Base BCO algorithm, then its
regret for BCO with d-delayed composite anonymous feedback while d is unknown satisfies

R(T) = O
(√

h(2T) log(T/h(2T))T + h−1(d)
)

If h : N+ → N+ is an increasing function such that h(T) = o(T) holds for any T , and
1. R be a ν-self-concordant barrier over Ω,
2. f1, ..., fT are β-smooth and σ-strongly-convex functions and | ft(x)| ≤ 1, ∀x ∈ K,
3. d > n.

Proof. Let k0 be the first round that dk0 ≥ d. Then, Tk0 satisfies h(Tk0−1) < d. Since h is an increasing
function, h−1 is also increasing. Thus, Tk0−1 < h−1(d), which implies Tk0 < 2h−1(d).

We now ignore the phases before k0, as these time steps will have an additional regret of at most
2h−1(d). Consider the phases with dk ≥ d. Notice that from Theorem 5.3, each phase k has regret
O
(√

dk log(tk/dk)tk + dk

)
when d > n, where tk = Tk/2 is the number of time steps in this phase.
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Then, the total regret in these phases is upper bounded by:

K∑
k=k0

O
(√

dk log(tk/dk)tk + dk

)
≤ O

(√
dK log(tK/dK )tK + dK

)
where K is the last phase number.

From the description of Algorithm 4–6, we have that tK ≤ T and dK ≤ h(2T). Thus, the total
regret of Algorithm 4–6 satisfies R(T) ≤ O

(√
h(2T) log(T/h(2T))T + h−1(d)

)
. □

Remark 5.3.
Surprisingly, since the last term of regret of Theorem 5.4 does not depend on T, our regret bound can
be arbitrary close to the regret lower bound given in Theorem 5.3, by restricting the increasing rate
of h, without using any prior information on d. However, a small increasing rate of the round size
will causes a large regret before we have dk ≥ d. In fact, the regret bound can be compressed to
Θ(

√
T ϵ logT1−ϵ ), which is quit close as the case of convex and smooth losses in [19], which attained

an upper bound of Θ(
√

T logT). This tells us the regret loss in anonymous and composite feedback is
O(h−1(d)).

Remark 5.4.
We reach nearΘ(T2/3) regret upper bound in Theorem 5.1 with aΘ(T2/3) base algorithm in [29]. And
we reduce the regret upper bound further to Θ(

√
T) by adopting Θ(

√
T)-base algorithm in [19]. This

indicates that the anonymity of the delay parameter d can only cause limited damage to the regret of
the algorithm. Moreover, the base BCO algorithm proposed in [19] is investigated under the BCO
setting where the adversary is limited to inflicting strongly-convex and smooth losses and the player
may choose points from a constrained decision set. In this setting with complex feedback, i.e. delayed
and anonymous feedback with unknown d, we devise an efficient algorithm that achieves a regret of
Θ(
√

T). This rate is the best possible up to logarithmic factors as implied by a work of [18], cleverly
obtaining a lower bound of Ω(

√
T) for the basic BCO setting. Thus, we conclude that we have reach

the optimal regret upper bound for this harder setting. Besides, the regret deterioration is neglectable
incurred by the anonymity of delay parameter d.

5.2 Multi-armed Bandit
The algorithm for multi-armed bandit with delayed and anonymous feedback while the delay

parameter d is unknown, is almost the same as that for BCO in the same hard setting, except the base
algorithm has been changed from an algorithm for BCO to one for MAB. We substitute Exp3 [14]
in Algorithm 4–10 and obtain Algorithm 4–13. The regret bound of this algorithm is given in the
following theorem.

Theorem 5.5.
If h : N+ → N+ is an increasing function such that h(T) = o(T) holds for any T , and then Algorithm
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4–13 satisfies
R(T) = O

(√
T h(2T)N log N + h−1(d)

)
Proof. Let k0 be the first round that dk0 ≥ d. Then, Tk0 satisfies h(Tk0−1) < d. Since h is an increasing
function, h−1 is also increasing. Thus, Tk0−1 < h−1(d), which implies Tk0 < 2h−1(d).

We now ignore the phases before k0, as these time steps will have an additional regret of at most
2h−1(d). Consider the phases with dk ≥ d. Notice that from Corollary 4 in [11], each phase k has
regret O(

√
dk tkN log N), where tk = Tk/2 is the number of time steps in this phase.

Specifically, Corollary 15 in [11] is given in the following:

Corollary 5.2.
If Algorithm 4–11 is run with Exp3(η) with = 4

√
d ln N
(4N+1)T as Base MAB, then its regret for N-armed

bandits with d-delayed composite anonymous feedback satisfies

R(T) ≤ 8
√

d(4N + 1)T ln N + O(d) = O(
√

dNT ln N)

Then, the total regret in these phases is upper bounded by:

K∑
k=k0

O
(√

dk tkN log N
)
≤ O

(√
dK tKN log N

)
where K is the last phase number.

From the description of Algorithm 4–6, we have that tK ≤ T and dK ≤ h(2T). Thus, the total
regret of Algorithm 4–6 satisfies R(T) ≤ O(

√
T h(2T)N log N + h−1(d)). □

Remark 5.5.
Algorithm 4–13 is first proposed by a senior in my lab. Compare to the Algorithm 4–11 defined in
[11], Algorithm 4–13 modify the approach to decide whether t ∈ U, i.e. the method to determine
whether to end the current round at round t (lines 14-17 in Algorithm 4–13). This modification is
designed to ensure that in each phase, we have

P(t ∈ U) = p, ∀t ∈ {1, ...,T},

where p is a constant. This will make sure us to use any inequalities in the proof and analysis of the
algorithm regret bound with respect to constant p. Besides, it will not changed the regret bound of the
original Algorithm 4–11. Moreover, the expected round size remains a constant, because we maintain
a constant P(t ∈ U) = p in Algorithm 4–13. This leads to a consequence that we cannot increase the
round size continuously in this algorithm, instead we have to changed the round size at an exponential
rate. That is why we try to split the whole time horizon into different phase. In addition to the idea of
phases division, we regard the sub-game in phase k within each phase has fixed time horizon Tk

2 and
delay parameter dk .

Remark 5.6.
Surprisingly, since the last term of regret of Theorem 5.5 does not depend on T, our regret bound
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can be arbitrary close to the regret lower bound given in [11], by restricting the increasing rate of
h, without using any prior information on d. However, a small increasing rate of the round size will
causes a large regret before we have dk ≥ d. In fact, the regret bound can be compressed toΘ(T1/2+ϵ ),
which is quit close as the case of d-known in [11], who attained an upper bound of O(

√
T). This tells

us the regret loss in anonymous and composite feedback is O(h−1(d)).
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Chapter 6 Numerical Result

In this chapter, we present our experiment results. We conduct extensive experiment to study
the regret bound of the algorithms proposed in Chapter 4. Specifically, we present the experiment on
algorithms for bandit convex optimization. Experiments on BCO without delay, BCO with delayed
and anonymous feedback while delay parameter d is known, and BCO in same setting while the delay
parameter d is unknown are presented for both basic algorithm based on Algorithm 4–4 from [29],
and optimal algorithm based on Algorithm 4–7 from [19], respectively. By the way, experiments on
multi-armed bandit will be omitted, for the simplicity of the thesis. Ultimately, comparison between
different algorithm will be presented. In this chapter, several loss functions are considered, which are
defined in the following equation:

Loss1 : ft(x) =
1
n

n∑
i=1

x2
i =

1
n

x⊤x (6–1)

Loss2 : ft(x) =
1
n

n∑
i=1

x4
i (6–2)

Loss3 : ft(x) =


1
n

n∑
i=1

(xi − 1)2, if t | 2 = 0

1
n

n∑
i=1

(xi + 1)2, if t | 2 = 1
(6–3)

6.1 BCO without Delay
In this section, we consider the performances of basic algorithm (Algorithm 4–4) and optimal

algorithm (Algorithm 4–7) on bandit convex optimization with simple feedback (no delay), respec-
tively.

6.1.1 Basic Algorithm

In this subsection, we regard Algorithm 4–4 as basic algorithm and study its performance with two
different loss functions Loss1 and Loss2, which are defined in Eq. (6–1) and Eq. (6–2), respectively.
We plot the cumulative regret and instantaneous regret (the value of loss function ft(xt) at the query
point xt) at the same time, which are shown in Fig. 6–2 and Fig. 6–1, respectively.
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Figure 6–1 Instantaneous regret for Algorithm 4–4 on Loss1 and Loss2.

From Fig. 6–1, we find that the instantaneous regret is oscillating for both Loss1 and Loss2. The
oscillations of the two functions have the same frequency but different amplitudes. In particular, the
instantaneous regret gets into oscillation after T0 = 14. In particular, Loss2 has larger amplitude than
Loss1, which is consistent with their definitions in Eq. (6–1) and Eq. (6–2).
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Figure 6–2 Cumulative regret for Algorithm 4–4 on Loss1 and Loss2.

Since the amplitude of instantaneous regret remains unchanged, the cumulative regret grows
linearly for both Loss1 and Loss2, which is shown in Fig. 6–2.

6.1.2 Optimal Algorithm

In this subsection, we regard Algorithm 4–7 as optimal algorithm and study its performance with
loss function Loss1 with two different value of σ. We plot the cumulative regret and instantaneous
regret at the same time, which are shown in Fig. 6–4 and Fig. 6–3, respectively.
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Figure 6–3 Instantaneous regret for Algorithm 4–7 on Loss1 and Loss2.

From Fig. 6–3, we find that the instantaneous regret is oscillating for both σ = 1 and σ = 2.
The oscillations of the two functions have the same frequency but different amplitudes. In particular,
the case when σ = 1 has larger amplitude than that of σ = 2.
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Figure 6–4 Cumulative regret for Algorithm 4–7 on Loss1 and Loss2.

Though the amplitude of instantaneous regret is changing constantly, the cumulative regret still
grows more linearly for Loss1 with σ = 1 and σ = 2, which is shown in Fig. 6–4, except that the
cumulative regret grows faster than linear growth for Loss2 with σ = 1.

Then, we analyze the Algorithm 4–7’s performance with loss function Loss3 with four different
value of σ. We plot the cumulative regret and instantaneous regret at the same time, which are shown
in Fig. 6–6 and Fig. 6–5, respectively.
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Figure 6–5 Instantaneous regret for Algorithm 4–7 on Loss3.

From Fig. 6–5, we find that the instantaneous regret is decaying for both σ = 1, 2, 3, 4. In
particular, the larger the σ is, the larger decaying rate.
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Figure 6–6 Cumulative regret for Algorithm 4–7 on Loss3.

Since the instantaneous regret is decaying, the cumulative regret grows sub-linearly for Loss3

with σ = 1, 2, 3, 4, which is shown in Fig. 6–6.

6.2 BCO with Known Delay
In this section, we show the performances of Algorithm 4–3 with base Algorithm 4–4 and

Algorithm 4–7, respectively. Similar as the above section, we will show the instantaneous and
cumulative regret for the algorithm in different parameter settings, with respect to time horizon T . In
this section, we only consider a constant loss function Loss3.
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6.2.1 Basic Algorithm

We first present the instantaneous regret for Algorithm 4–3 with base Algorithm 4–4 on Loss3

in Fig. 6–7. We find that the instantaneous regret is oscillating around the line ft(xt) = 0.06.
Interestingly, the instantaneous regret split into two groups, i.e. one for δ = 0.5 and the other one for
δ = 0.1. In particular, the group of δ = 0.5 has much larger instantaneous regret than that of group
with δ = 0.1.
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Figure 6–7 Instantaneous regret for Algorithm 4–3 with base Algorithm 4–4 on Loss3.

Then, we present the cumulative regret for Algorithm 4–3 with base Algorithm 4–4 on Loss3

in Fig. 6–8. We find all four regret grows linearly with respect to T , since the instantaneous regret
oscillates around a constant. And there are still two groups of cumulative regret, just as the case of
instantaneous regret, which is consistent with Fig. 6–7.
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Figure 6–8 Cumulative regret for Algorithm 4–3 with base Algorithm 4–4 on Loss3.
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6.2.2 Optimal Algorithm

We first present the instantaneous regret for Algorithm 4–3 with base Algorithm 4–4 on Loss3

in Fig. 6–9. We find that the instantaneous regret is decaying with respect to T . Besides, the larger
the σ, the larger the decaying ratio of the instantaneous regret.
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Figure 6–9 Instantaneous regret for Algorithm 4–3 with base Algorithm 4–7 on Loss3.

Then, we present the cumulative regret for Algorithm 4–3 with base Algorithm 4–4 on Loss3 in
Fig. 6–10. We find all four regret grows sub-linearly with respect to T . The underlying reason is that
the instantaneous regret is decaying. And the larger the σ, the smaller the cumulative regret, which is
consistent with Fig. 6–9.
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Figure 6–10 Cumulative regret for Algorithm 4–3 with base Algorithm 4–7 on Loss3.
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6.3 BCO with Unknown Delay
In this section, we study the algorithms’ performance for bandit convex optimization with delayed

and anonymous feedback, while the delay parameter d is unknown. Two algorithms, i.e. Algorithm
4–6 and Algorithm 4–9 are considered in this section, which are obtained from substituting Algorithm
4–4 and Algorithm 4–7 in Algorithm 4–1, respectively. Here, we only consider one loss function, i.e.
Loss3. And the delay parameter is set to d = 8. Apart from the regret behavior of each algorithm
individually, the comparison of two algorithms’ regret behavior will be given as well.

6.3.1 Basic Algorithm

At first, we present instantaneous regret for Algorithm 4–6 on Loss3 in Fig. 6–11. We find
that the instantaneous regret is oscillating around the line ft(xt) = 0.06 for all four curves. Roughly
speaking, all four curves seem to have similar amplitudes.
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Figure 6–11 Instantaneous regret for Algorithm 4–6 on Loss3.

Then, we present cumulative regret for Algorithm 4–6 on Loss3 in Fig. 6–12. We find all four
regret grows linearly with respect to T , since the instantaneous regret oscillates around a constant.
And four curves almost have same cumulative regret (except that the case with h(T) = T1/2 has notable
largest regret), just as the case of instantaneous regret, which is consistent with Fig. 6–11.
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Figure 6–12 Cumulative regret for Algorithm 4–6 on Loss3.

6.3.2 Optimal Algorithm

We first present the instantaneous regret for Algorithm 4–6 on Loss3 in Fig. 6–9. We find that
the instantaneous regret is decaying with respect to T . Besides, the larger the power of h(T) with
respect to T , the larger the decaying ratio of the instantaneous regret.
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Figure 6–13 Instantaneous regret for Algorithm 4–9 on Loss3.

Then, we present the cumulative regret for Algorithm 4–6 on Loss3 in Fig. 6–14. We find all
four regret grows sub-linearly with respect to T . The underlying reason is that the instantaneous regret
is decaying. And the larger the power of h(T) with respect to T , the smaller the cumulative regret,
which is consistent with Fig. 6–13.
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Figure 6–14 Cumulative regret for Algorithm 4–9 on Loss3.

Further, we show the regret behavior under different estimated dk for Algorithm 4–9 with the
same delay d with T = 103 and h(T) = T1/2 in Fig. 6–15. In particular, d = 2 and d = 4 cases are
presented, respectively. The dashed blue and red curve are the immediate result of the experiment for
d = 2 and d = 4 case, respectively. We find that the curve is oscillating. The underlying reason comes
from the instabilities of module for finding minimum point a function, which does not guarantee to
find the optimal solution. Thus, we smooth the curve by taking running average of the curve with
span length for 10 rounds. The smoothed curves are plotted in solid lines (red for d = 2 and green for
d = 4). Two curve are both increasing sub-linearly. Interestingly, we find that the cumulative regret
for d = 2 is larger than that of d = 4.
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Figure 6–15 Behavior under different estimated dk for Algorithm 4–9 on Loss3 with the same delay d.
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6.3.3 Comparison

We present the algorithms’ regret behavior of Algorithm 4–6 and Algorithm 4–9 on the same
setting here, where d = 8, T = 1000, h(T) = T1/2 and f(x) = Loss3.
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Figure 6–16 Comparison of instantaneous regret of Algorithm 4–6 and Algorithm 4–9 on Loss3.

From Fig. 6–16, we find that the instantaneous regret for Algorithm 4–6 is oscillating around
line ft(xt) = 0.06, while the that for the other algorithm is decaying.
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Figure 6–17 Comparison of cumulative regret of Algorithm 4–6 and Algorithm 4–9 on Loss3.

As we expected, the cumulative regret for Algorithm 4–6 grows linearly, while that for Algorithm
4–9 grows sub-linearly. Besides, the cumulative regret for Algorithm 4–9 is smaller than that of
Algorithm 4–6, which proves the optimality of Algorithm 4–9 from the side.
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Chapter 7 Conclusion

In this thesis, we study the multi-armed bandit problem in versatile settings. We pay extreme
attention to bandit convex optimization since bandits convex optimization can be regarded as the
generalization of the multi-armed bandit problem. In particular, we study the BCO with complex
feedback, i.e. the delayed and anonymous feedback, while the delay parameter d is unknown.

We propose a general algorithm framework which can be applied to the BCO in the mentioned
hard setting, for the first of time. The underlying idea of this framework is straightforward, that is first
estimate the delay and then follow the fixed-delay algorithm (i.e. Algorithm 4–3 first proposed in [11]).
The delay estimation is performed during each phase of the framework. At present, we propose two
algorithms (i.e. Algorithm 4–6 and Algorithm 4–9) for BCO with complex feedback. The immediate
result is that the first algorithm reach near Θ(T2/3) regret upper bound, while the second one reach
near Θ(

√
T) regret upper bound, except a logarithmic order. To the best of the authors’ knowledge,

the second algorithm has the best state-of-the-art regret upper bound of the BCO with delayed and
anonymous feedback while the delay parameter is unknown. Moreover, it is an optimal algorithm as
well, because it has been proved the regret lower bound is Ω(

√
T).

In addition to the proposed algorithm and regret analysis, we conduct extensive experiments to
verify the regret behavior of the proposed algorithms. Throughout the numerical experiment, the
algorithm’s performance has been verified, which confirms the correctness of our proof. In addition
to the verification of the regret upper bound of the proposed algorithm, the comparison of regret
behaviors between Algorithm 4–6 and Algorithm 4–9 proves the optimality of the algorithm as well.

In the future, we would like to study the multi-armed bandit problem and bandit optimization
in other forms of complex feedback, with a similar goal to minimize the expected regret. Also, we
will try to figure out some interesting scenario where our model setting can be fitted such that our
algorithm can take advantage of it. We hope our work can shed more lights on the future study of
MAB in versatile settings.
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