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ABSTRACT

Multi-user delay constrained scheduling is important in many real-

world applications including wireless communication, live stream-

ing, and cloud computing. Yet, it poses a critical challenge since

the scheduler needs to make real-time decisions to guarantee the

delay and resource constraints simultaneously without prior infor-

mation of system dynamics, which can be time-varying and hard

to estimate. Moreover, many practical scenarios suffer from partial

observability issues, e.g., due to sensing noise or hidden correla-

tion. To tackle these challenges, we propose a deep reinforcement

learning (DRL) algorithm, named Recurrent Softmax Delayed Deep

Double Deterministic Policy Gradient (RSD4)1, which is a data-

driven method based on a Partially Observed Markov Decision

Process (POMDP) formulation. RSD4 guarantees resource and delay
constraints by Lagrangian dual and delay-sensitive queues, respec-

tively. It also efficiently tackles partial observability with a memory

mechanism enabled by the recurrent neural network (RNN) and

introduces user-level decomposition and node-level merging to

ensure scalability. Extensive experiments on simulated/real-world

datasets demonstrate that RSD4 is robust to system dynamics and

partially observable environments, and achieves superior perfor-

mances over existing DRL and non-DRL-based methods.
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1 INTRODUCTION

Due to the emergence of many real-time interactive applications,

e.g., online games, virtual reality (VR), and cloud computing, and

the increasingly more rigid user requirements, delay-constrained

scheduling has become a central problem in guaranteeing the sat-

isfying quality of experience in many areas. For example, express

delivery is a typical delay-sensitive scheduling problem. According

to [17], a small increase in the delivery timewill significantly impact

customers’ perceived ambiguity and risk, and reduce satisfaction.

Delay-constrained scheduling is also critical for data communica-

tions [34], video streaming [2], and data center management [25].

However, delay-constrained scheduling is challenging in many

aspects. First, the scheduler needs to satisfy latency and resource

constraints, while the delay metric depends on the overall dynamics

and control of the system across time, and the resource constraint

further couples scheduling decisions. Second, system dynamics, e.g.,

user channels in mobile networks, are hard to trace since distribu-

tions of underlying random components can be highly dynamic and

correlated. Third, practical scheduling systems usually face a large

number of users and have complex network structures, and demand

highly scalable solutions for large-scale and multi-hop scenarios.

For example, live video platforms such as YouTube and Instagram

have thousands of millions of daily active users [4]. Fourth, due to

sensing noise and hidden correlation, practical systems can also

suffer from partial observability issues, e.g., most IoT devices cannot

have perfect knowledge of a dynamic channel environment due

to hardware limitation and short sensing time [32], and channel

states in network systems can also be hard to obtain [14]. This uni-

versality of partial observability in real-world scheduling problems

demands highly robust algorithms.

Many algorithms have been proposed for scheduling problems

based on different methods, including queueing-based methods,

e.g., [11, 26], optimization-based methods, e.g., [10, 13], dynamic

programming (DP)-based algorithms, e.g., [3, 28], and Lyapunov

control-based approaches, e.g., [16, 23]. However, these approaches

either require prior knowledge about system dynamics, or suf-

fer from curse-of-dimensionality due to large state space, or fo-

cus on stability constraints rather than delay. To overcome the

above limitations, we propose a deep reinforcement learning (DRL)-

based algorithm, named Recurrent Softmax Delayed Deep Double

Deterministic Policy Gradient (RSD4), whose procedure is depicted
in Figure 1. RSD4 builds upon the recurrent deterministic policy

gradient [8] and softmax deterministic policy gradient [22], and

introduces several novel components for handling the schedul-

ing problem in partially observed settings. Specifically, RSD4 is an
end-to-end method based on a partially observed Markov decision

process (POMDP) formulation with a Lagrange dual update. It does
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not require any prior knowledge of system dynamics and effectively

captures hidden system correlation across time slots by a recurrent

module. RSD4 makes use of a softmax operator to improve value

estimation in training and robustness in handling complex sys-

tem dynamics. Finally, it introduces unified training for improving

training efficiency, and user-level decomposition and node-level

merging to support large-scale and multi-hop scenarios.
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Figure 1: RSD4 framework for delay-constrained scheduling.

The RSD4 framework has several unique features that make it

suitable for handling delay-sensitive scheduling tasks, especially

in partially observable systems. Firstly, its base POMDP formula-

tion is general to capture the partial observability issue that often

arises in real-world systems. Secondly, the proposed RSD4 algorithm
possesses key advantages of existing DRL algorithms, i.e., being

a data-driven and end-to-end method that does not require prior

knowledge of the system dynamics. Thirdly, the RSD4 algorithm

is highly scalable, making it suitable for practical implementation

in large-scale resource-constrained scenarios, where the system

observation can be partial and even not instantaneous. We con-

duct extensive experiments to validate the performance of RSD4 on

both simulated environments and real-world datasets. The results

demonstrate that RSD4 significantly outperforms classical non-DRL

methods and existing DRL benchmarks in various scenarios. Our

framework and results shed light on designing scalable and efficient

DRL algorithms for scheduling complex systems.

The main contributions of this paper are summarized as follows.

(i) We formulate a general POMDP framework for investigating

large-scale multi-user delay-constrained scheduling problems with

average resource constraint, which is suitable for partially observ-

able systems, and provides two novel functions for scalability, i.e.,

user-level decomposition and node-level merging.

(ii) We propose a novel DRL-based algorithm, RSD4, to tackle the
partial observability problem and achieve robust value prediction.

RSD4 builds upon the recurrent policy gradient method and softmax-

based value estimation. It introduces a unified training approach to

improve training efficiency. It also adopts a double-branch neural

network architecture and delayed policy update to learn a robust

policy against different system dynamics.

(iii) We conduct extensive experiments on real datasets, showing

that RSD4 efficiently learns system dynamics under both large-scale

and multi-hop cases, and significantly outperforms existing sched-

uling methods, especially in various partially-observable settings.

2 RELATEDWORK

Many existing works have studied the scheduling problem. Among

the many techniques adopted, four methodologies have received

much attention, including queueing theory-based method, e.g., [11,

26], optimization-basedmethod, e.g., [10, 13], dynamic programming-

based control, e.g., [3, 28], Lyapunov-based optimization, e.g., [16,

23]. However, these approaches either do not explicitly capture the

delay constraint or require precise system dynamics which can be

highly non-trivial in real systems. Besides, DP-based algorithms

often suffer from the curse-of-dimensionality and are not scalable

to large-scale scenarios. DRL has been receiving much attention

in the scheduling field, due to its generalization and scalability

capability, and has been adopted in several scheduling scenarios,

e.g., video streaming [18], Multipath TCP control [34], network re-

configurability [2], MAC scheduling [20], and resource-constrained

scheduling, e.g., [7, 19, 21, 31]. However, the aforementioned works

either do not ensure average resource constraints or require a per-

fectly observable system state as input. In addition, they do not

consider large-scale or multi-hop systems.

Our proposed RSD4 is a data-driven end-to-end algorithm, which

well handles the partial observability issue under the POMDP for-

mulation. Besides, the delay and resource constraint are handled

by delay-sensitive queues and the Lagrangian dual, respectively. It

also adopts user-level decomposition and node-level merging to

significantly extend the scalability.

3 PROBLEM AND PRELIMINARY

In this section, we present our scheduling problem description. For

ease of presentation, we focus on the single-hop scheduling problem

in Section 3.1 and the corresponding Lagrangian dual in Section

3.2. The multi-hop problem will be presented later in Section 4.3.

3.1 The Scheduling Problem

We consider the scheduling problem illustrated in Figure 2. Time

is divided into discrete slots 𝑡 ∈ {0, 1, 2, ...}. At the beginning of

each time slot, the scheduler first receives job arrivals, e.g., data

packets in a network or parcels in a delivery station. The number of

job arrivals for user 𝑖 at time slot 𝑡 is denoted as 𝐴𝑖 (𝑡). We denote

𝑨(𝑡) = [𝐴1 (𝑡), ..., 𝐴𝑁 (𝑡)]. Each job for user 𝑖 is associated with a

strict delay constraint 𝜏𝑖 , i.e., a job needs to be served within 𝜏𝑖 slots
upon its arrival and will be outdated and discarded otherwise.

Buffer
Service Channel

User 

User 

……

Arrival

Figure 2: A general delay-constrained scheduling problem in

a single-hop network. Jobs arrive at the server and need to

be delivered to their destinations before deadline.

The buffer model. Jobs arriving at the system are first placed in

a buffer, conveniently modeled by a set of delay-sensitive queues.

Specifically, the buffer contains 𝑁 separate delay-sensitive queues

of infinite size, one for each user. The state of each queue 𝑖 at time

slot 𝑡 is denoted by 𝑩𝑖 (𝑡) = [𝐵0𝑖 (𝑡), 𝐵
1
𝑖 (𝑡), ..., 𝐵

𝜏𝑖
𝑖 (𝑡)], where 𝐵𝜏𝑖 (𝑡)

stands for the number of jobs for user 𝑖 with a remaining time of 𝜏
timeslots until expiration for 1 ≤ 𝜏 ≤ 𝜏𝑖 .

The scheduling and service model. At every time slot 𝑡 , the sched-
uler makes decision on the resources allocated to jobs in the buffer.

The decision for user 𝑖 is denoted as 𝒆𝑖 (𝑡) = [𝑒0𝑖 (𝑡), 𝑒
1
𝑖 (𝑡), ..., 𝑒

𝜏𝑖
𝑖 (𝑡)],
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where 𝑒𝜏𝑖 (𝑡) ∈ [0, 𝑒max] denotes the resource, e.g., energy, allocated

to serve each job in queue 𝑖 with deadline 𝜏 . Each scheduled job

then goes through a service channel, e.g., a wireless channel, whose

condition is random and its value at time slot 𝑡 for user 𝑖 is denoted
by 𝑐𝑖 (𝑡). We denote the service channel conditions at timeslot 𝑡
as 𝒄 (𝑡) = [𝑐1 (𝑡), 𝑐2 (𝑡), ..., 𝑐𝑁 (𝑡)]. For a user 𝑖 job with allocated

resource 𝑒 and channel condition 𝑐 , the probability of successful

service is denoted as 𝑃𝑖 (𝑒, 𝑐), where 𝑒 = 0 means that the job will

not be served and 𝑃𝑖 (0, 𝑐) = 0. Also, 𝑃𝑖 (𝑒, ·) > 0 for all 𝑒 > 0. If a

job is scheduled but fails in service, it remains in the buffer if it is

not outdated. The instantaneous resource consumption at time slot

𝑡 is denoted as 𝐸 (𝑡) =
∑𝑁
𝑖=1 𝒆

�
𝑖 (𝑡)𝑩𝑖 (𝑡) and the average resource

consumption is 𝐸 = lim𝑇→∞
1
𝑇

∑𝑇
𝑡=1 𝐸 (𝑡).

The system objective. For user 𝑖 , the number of successfully served

jobs at time slot 𝑡 is denoted as 𝑑𝑖 (𝑡). Each user is given a weight 𝛽𝑖 ,
and the weighted instantaneous throughput is denoted as 𝐷 (𝑡) =∑𝑁
𝑖=1 𝛽𝑖𝑑𝑖 (𝑡). The objective of the scheduler is to maximize the

weighted average throughput, defined as𝐷 = lim𝑇→∞
1
𝑇

∑𝑇
𝑡=1 𝐷 (𝑡),

subject to the average resource consumption limit, i.e., 2

P max
𝒆𝑖 (𝑡 ) :1≤𝑖≤𝑁,1≤𝑡 ≤𝑇

lim
𝑇→∞

1

𝑇

𝑇∑
𝑡=1

𝑁∑
𝑖=1

𝛽𝑖𝑑𝑖 (𝑡) (1)

s.t. lim
𝑇→∞

1

𝑇

𝑇∑
𝑡=1

𝑁∑
𝑖=1

𝒆�𝑖 (𝑡)𝑩𝑖 (𝑡) ≤ 𝐸0

where 𝐸0 is the average resource consumption limit. We denote its

optimal value as T∗.

Note that although our problem description adapts the formula-

tion in [28], our goal is to develop practical and scalable solutions

to scheduling in real-world environments, i.e., without assumptions

on ergodicity of dynamics and allow the randomness to be arbitrar-

ily correlated with hidden factors. Note here we allow resources to

be allocated without hard constraint. We will show in Section 6.3

that hard constraints can be easily incorporated with only minimal

impact on performance.

3.2 Lagrange Dual

Define the following Lagrangian function of problem (1) for han-

dling the average resource budget 𝐸0:

L(𝜋, 𝜆) = lim
𝑇→∞

1

𝑇

𝑇∑
𝑡=1

𝑁∑
𝑖=1

[𝛽𝑖𝑑𝑖 (𝑡) − 𝜆𝒆
�
𝑖 (𝑡)𝑩

�
𝑖 (𝑡)] + 𝜆𝐸0 (2)

with respect to control policy 𝜋 and Lagrange multiplier 𝜆. Denote
𝑔(𝜆) the Lagrange dual function for fixed Lagrange multiplier 𝜆:

𝑔(𝜆) = max
𝜋

L(𝜋, 𝜆) = L(𝜋∗(𝜆), 𝜆), (3)

where the maximizer is denoted as 𝜋∗(𝜆). Using Lemma 3 in [28],

the optimal timely throughput T∗ equals the optimal value of the

dual problem, i.e., T∗ = min𝜆≥0 𝑔(𝜆) = 𝑔(𝜆∗), where 𝜆∗ is the

optimal Lagrange multiplier. To find the optimal policy 𝜋∗(𝜆∗) =
argmax𝜋 L(𝜋, 𝜆∗), it suffices to find optimal Lagrangian multiplier

𝜆∗. Denote the consumed resource under policy 𝜋 in time slot 𝑡 as

𝐸𝜋 (𝑡). The Danskin’s Theorem in [1] states that𝑔′(𝜆) = 𝜕L(𝜋∗,𝜆)
𝜕𝜆 =

2We assume w.l.o.g. that all corresponding limits exist. The results can be generalized
with lim sup and lim inf definitions otherwise.

𝐸0−𝐸𝜋∗ (𝜆) , where 𝐸𝜋∗ (𝜆) = lim𝑇→∞
1
𝑇

∑𝑇
𝑡=1 𝐸𝜋∗ (𝜆) (𝑡) denotes the

average resource consumption. Thus, the optimal policy 𝜋∗(𝜆∗) can
be obtained by recovering the dual function 𝑔(𝜆) for some 𝜆 and
taking gradient descent to find the optimal 𝜆∗. While the theoretical

understanding is clear, finding the optimal 𝜋∗(𝜆) for a given 𝜆 in a

practical system is non-trivial, due to the following main reasons:

• System dynamics are hard to trace since distributions can

be highly dynamic and correlated in many scenarios.

• The system can only be partially observed, e.g., due to sens-

ing limitation and noise and other hidden factors.

• Practical scheduling systems usually have a large number

of users and complex multi-hop topology, which demand

highly scalable solutions.

Prior works [3, 28] uses DP to find the maximizer 𝜋∗(𝜆), which
requires the prior knowledge of system dynamics and suffers from

the curse-of-dimensionality in large systems, and may not directly

apply to partially observable systems. These motivate us to design

a DRL-based framework with POMDP formulation in Section 4.

4 OVERALL FRAMEWORK

In this section, we present our novel POMDP formulation for solv-

ing the scheduling problem P in Section 3.1, which supports user-

level decomposition and node-level merging for scalability.

4.1 The POMDP Formulation

We now specify the POMDP formulation for the scheduling prob-

lem, under which the RSD4 can be applied to find the optimal

policy 𝜋∗(𝜆∗). Specifically, the POMDP is represented by M =
〈S,O,A, 𝑟 , 𝑃,𝛾〉, where S is the state space, O is the observation

space,A is the action space, 𝑟 is the reward function, 𝑃 denotes the

transition matrix, and 𝛾 stands for the discount factor.

State and Observation. The overall system state 𝑠𝑡 includes 𝑨(𝑡),
𝑩1 (𝑡),..., 𝑩𝑁 (𝑡), 𝒄 (𝑡) and other information of the underlying MDP

unobservable by the scheduler, e.g., random hyperparameters of suc-

cessful transmission probability, or mobile user position that affects

traffic arrival and channel. We consider 𝑠𝑡 to be partially-observed

since partial observable scenarios are common in scheduling prob-

lems. This implies that the actual observation 𝑜𝑡 is a subset of 𝑠𝑡 and
the exact form of 𝑜𝑡 depends on environment settings. For example,

Figure 3(a) shows the observed system of a four-use case, where the

observation 𝑜𝑡 = [𝑩1 (𝑡), ...,𝑩𝑁 (𝑡), 𝒄 (𝑡)] only includes buffer with

delay-sensitive queues and channel states but not other factors.

(a) Observed system (b) Decomposed observation

(c) System observation

Figure 3: Observations for a four-user system (time index

omitted for brevity).
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Action and Reward. At time slot 𝑡 , the control action is denoted

by 𝑎𝑡 = [𝒆1 (𝑡), ..., 𝒆𝑁 (𝑡)], and the reward is set to

𝑟𝑡 = 𝐷 (𝑡) − 𝜆𝐸 (𝑡), (4)

which is the instantaneous weighted throughput 𝐷 (𝑡) minus the

resource consumption 𝐸 (𝑡) weighted by the multiplier 𝜆.

Learning Objective. Under POMDP, an optimal agent needs to

access the entire history ℎ𝑡 = (𝑜1, 𝑎1, 𝑜2, 𝑎2, ..., 𝑎𝑡−1, 𝑜𝑡 ) and learn a

deterministic policy 𝜋 (·;𝜙) parameterized by 𝜙 , which maps from

the history to the action space, with the objective of maximizing

the expected long-term rewards

𝐽 (𝜋 (·;𝜙)) = E

[
𝑇∑
𝑡=0

𝛾𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠0, 𝑎0, 𝜋 (·;𝜙)

]
.

Remark 1. With the reward setting in (4), when 𝛾 = 1, the cumu-

lative discounted reward is 𝑅 =
∑𝑇
𝑡=1 𝛾

𝑡𝑟𝑡 = 𝑇L(𝜋, 𝜆) −𝜆𝑇𝐸0, which
differs from the Lagrangian function value in (2) by −𝜆𝑇𝐸0. This
means that an algorithm maximizing the expected rewards 𝐽 (𝜋 (·;𝜙))
is also a maximizer for the Lagrangian function, which is the objective

of RSD4 (detailed in Section 5).

4.2 User-Level Decomposition

The system state contains the buffer information whose size is

proportional to the user number. This makes learning much harder

in large-scale systems, due to the need to train neural networks

with more hyperparameters, which largely limits the scalability of

DRL-based methods. To overcome this issue, we propose a user-

level decomposition technique, such that RSD4 finds the optimal

policy with small neural networks even under large-scale scenarios.

Our user-level decomposition is different from the packet-level

decomposition in [3, 28], primarily due to the fact that packet-level

decomposition requires a much larger number of neural network

parameters, resulting in poor performance.

Specifically, we define the user-level decomposed Lagrangian

function for user 𝑖 as

L𝑖 (𝜋𝑖 , 𝜆𝑖 ) = lim
𝑇→∞

1

𝑇

[ 𝑇∑
𝑡=1

𝛽𝑖𝑑𝑖 (𝑡) − 𝜆𝑖𝒆
�
𝑖 (𝑡)𝑩

�
𝑖 (𝑡)

]
, (5)

where 𝜋𝑖 is the decomposed policy for scheduling user 𝑖’s jobs in
the buffer. Consequently, maximizing the Lagrangian function in (2)

for a fixed 𝜆 can be accomplished by maximizing (5) for each user

𝑖’s sub-problem separately with 𝜆𝑖 = 𝜆. Denote the optimal policy

for user 𝑖’s sub-problem as 𝜋∗𝑖 (𝜆𝑖 ) with multiplier 𝜆𝑖 . After solving
Problem (5) for each user with a fixed 𝜆𝑖 , the optimal policy 𝜋∗(𝜆)
that maximizes the Lagrangian (2) can be derived by letting each

user take its own optimal scheduling policy 𝜋∗𝑖 (𝜆𝑖 ) with 𝜆𝑖 = 𝜆.

Decomposed POMDP. Based on the above intuition, we decom-

pose the POMDP into user-level subproblems, where for each

user 𝑖 , the action is 𝑎
(𝑖)
𝑡 = 𝒆𝑖 (𝑡), and the reward becomes 𝑟

(𝑖)
𝑡 =

𝛽𝑖𝑑𝑖 (𝑡) − 𝜆𝒆�𝑖 (𝑡)𝑩𝑖 (𝑡) at time slot 𝑡 . The observation is also de-

composed as well, Figure 3(b) presents 𝑜
(𝑖)
𝑡 = [𝑖,𝑩𝑖 (𝑡), 𝒄𝑖 (𝑡)] for

a four-user case, where the first index for user 𝑖’s sub-problem is

required for algorithm training (explained next). This is a key step

in RSD4. As we will see in Section 6.5, without decomposition, RSD4
and other existing DRL algorithms can fail due to a large size of the

state representation.

Unified Training. After decomposition, the state space is com-

pressed, and there are 𝑁 different sub-POMDPs, whose dynamics

of different users may not be the same. To avoid training 𝑁 differ-

ent DRL agents, leading to linear growth of computation power,

we propose the method of unified training. That is, to train dif-

ferent samples from different sub-environments together, and use

an extra user index 𝑖 as the identifier to samples from the user 𝑖’s
sub-problem, as shown in Figure 3(b). Consequently, the dimension

of training samples remains the same regardless of the system scale.

Remark 2. With observation decomposition and unified training,

a single system observation 𝑜𝑡 is decomposed into 𝑁 separate sate

𝑜1𝑡 , 𝑜
2
𝑡 , ..., 𝑜

𝑁
𝑡 , such that one step dynamics in the original environment

creates 𝑁 samples for the replay buffer. Consequently, it does not re-

quire heavy parallel computation and greatly enriches the abundance

of the replay buffer, such that common knowledge across different

users’ sub-POMDPs is learned efficiently. With PODMP decomposi-

tion, the number of neural network parameters also remains small

even for large-scale systems, because the dimension of observation

remains unchanged after decomposition. This useful feature makes

our framework highly scalable.

4.3 Multi-Hop and Node-level Merging

We present the multi-hop setting here and describe a technique

called node-level merging for reducing complexity in this case.

Specifically, in multi-hop networks, each flow can traverse multiple

hops and the agent needs to decide which flows to serve and how

many resources to allocate at each node. Besides, each node has

an average resource constraint. Take Figure 4(a) as an example.

There are three flows passing through three paths respectively, i.e.,

𝐹1 = {1 → 2 → 3 → 5} with deadline 𝜏1, 𝐹2 = {2 → 4 → 6}

with deadline 𝜏2, and 𝐹3 = {2 → 3} with deadline 𝜏3. The idea of

(a) Multi-hop network with three paths. (b) Three flows

Figure 4: (a) A multi-hop network with three paths repre-

sented in different colors, each supports one flow. (b) The

flows are aligned with starting nodes.

node-level merging is to augment the state, observation, action,

and reward in the POMDP formulation for multihop scheduling.

Figure 5 shows one example with the detailed procedure below.

• State and Observation: The system state is obtained by merg-

ing buffer and channel states in different hops, as shown

in Figure 5. Since jobs in a multi-hop flow differ only in

node position and remaining time until expiration, we en-

code the system state by an aggregation of buffer states at

the nodes. Besides, the buffer state at hop 𝑗 for flow 𝑖 is de-

noted as 𝑩 ( 𝑗)
𝑖 (𝑡) = [𝐵

0( 𝑗)
𝑖 (𝑡), 𝐵

2( 𝑗)
𝑖 (𝑡), ..., 𝐵

𝜏𝑖 ( 𝑗)
𝑖 (𝑡)] where

𝐵
𝜏 ( 𝑗)
𝑖 (𝑡) denotes the number of jobs for flow 𝑖 at hop 𝑗

with a remaining time of 𝜏 timeslots until expiration for

0 ≤ 𝜏 ≤ 𝜏𝑖 . Denote the path length flow 𝑖 as ℎ𝑖 . The node-
level merging idea is to set the overall observation 𝑜𝑡 to
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be [𝑩 (1)
1 (𝑡), ...,𝑩 (ℎ1)

1 (𝑡), ...,𝑩 (ℎ𝑁 )
𝑁 (𝑡), 𝒄 (𝑡)] and potentially

other factors in the environment. Figure 5 shows a case

when 𝑜𝑡 = [𝑩 (1)
1 (𝑡), ...,𝑩 (ℎ1)

1 (𝑡), ...,𝑩 (ℎ𝑁 )
𝑁 (𝑡), 𝒄 (𝑡)].

• Action: The action is similarly obtained bymerging actions at

different nodes, i.e., 𝑎𝑡 = [𝒆 (1)1 (𝑡), ..., 𝒆 (ℎ1)
1 (𝑡), ..., 𝒆 (ℎ𝑁 )

𝑁 (𝑡)],

where 𝒆 ( 𝑗)𝑖 (𝑡) represent the resource allocated to user 𝑖’s
𝑗-th node for 1 ≤ 𝑗 ≤ ℎ𝑖 .

• Reward: The reward is set to 𝑟𝑡 = 𝐷 (𝑡) −
∑𝑀
𝑘=1 𝜆𝑘𝐸

(𝑘) (𝑡),

where 𝜆𝑘 and 𝐸 (𝑘) (𝑡) correspond to the Lagrangian multi-

plier and resource consumption at node 𝑖 for 1 ≤ 𝑘 ≤ 𝑀 ,

and𝑀 is the number of nodes involved in the scheduling.

Figure 5: Node-level Merging of a three-flow case. Flow 𝑖’
node 𝑗 is associated with a buffer 𝑩𝑖

𝑗 . Flows are aligned with

starting nodes then concatenated as observation 𝑜𝑡 .

A common approach for multi-hop scheduling is to address the

scheduling problem in each node separately. However, in delay-

constrained multi-hop networks, scheduling each node separately

cannot satisfy the hard delay constraint. Multi-agent architecture

[33, 35] has been adopted for multi-hop networks but with more

computation resource requirements and is hard to train. Node-

level merging provides a novel way of concatenating buffers of

different hops in flows together, making its training similar to

that for a single-hop scheduling problem except with a higher

input dimension. This avoids training multiple agents for multi-

hop networks, and efficiently reduces the complexity in training. It

allows RSD4 to perform well and outperforms other methods, even

when the system scale in terms of state dimension is significantly

increased in multihop networks (see Section 6.5).

5 PROPOSED METHOD: RSD4
We present our novel Recurrent Softmax Delayed Deep Double

Deterministic Policy Gradient (RSD4) algorithm in Algorithm 1.

RSD4 builds upon the recurrent deterministic policy gradient [8]

and softmax deterministic policy gradient [22], and introduces sev-

eral novel components for handling the scheduling problem in

partially observed settings. Specifically, RSD4 is a model-free DRL

algorithm, which takes the popular actor-critic [12] framework. It

well handles partial observability issues by memory mechanism

enabled by recurrent neural networks (RNNs) and resolves the

overestimation problem in existing recurrent DRL methods with

the softmax operator. Thus, it owns advantages from recurrent

deterministic policy gradient [8] and softmax deterministic policy

gradient [22]. RSD4 also adopts a double-branch architecture from

[24] to better utilize the memory mechanism of the RNN, and im-

plements a delayed policy update frequency to further reduce the

variance in value estimate.

Initially, RSD4makes use of the state-action function𝑄 (ℎ𝑡 , 𝑎𝑡 ;𝜃 )
parameterized by 𝜃 , which is defined as

Algorithm 1 RSD4 with decomposition

Require: 𝜆0, resource limit 𝐸0, learning rate 𝛼 , Precision 𝛿 , episode
number𝑀 , episode length𝑇 , batch size 𝑏, target update rate 𝜏 .

1: 𝜆1 ← 𝜆0, 𝜆0 ← 0, 𝑘 ← 1

2: while |𝜆𝑘 − 𝜆𝑘−1 | > 𝛿 do

3: Initialize 𝑁 learning environments with 𝑟
(𝑖)
𝑡 = 𝛽𝑖𝑑𝑖 (𝑡) −

𝜆𝒆�𝑖 (𝑡)𝑩𝑖 (𝑡) for 𝑖-th environment.

4: Initialize critic networks 𝑄1, 𝑄2, and actor networks 𝜋1, 𝜋2
with random parameters 𝜃1, 𝜃2, 𝜙1, 𝜙2. Initialize target net-
work 𝜃−1 ← 𝜃1, 𝜃

−
2 ← 𝜃2, 𝜙

−
1 ← 𝜙1, 𝜙

−
2 ← 𝜙2.

5: Initialize replay buffer D.

6: for episodes = 1 to𝑀// Episodic interaction do

7: for 𝑡 = 1 to 𝑇 do

8: for 𝑖 = 1 to 𝑁 do

9: Receive sub observation 𝑜𝑖𝑡
10: ℎ𝑖𝑡 ← ℎ𝑖𝑡−1, 𝑎

𝑖
𝑡−1, 𝑜

𝑖
𝑡

11: Select action 𝑎𝑖𝑡 based on 𝜋1 and 𝜋2.
12: end for

13: end for

14: Store (𝑜𝑖1, 𝑎
𝑖
1, 𝑟

𝑖
1, ..., 𝑜

𝑖
𝑇 , 𝑎

𝑖
𝑇 , 𝑟

𝑖
𝑇 ) in D for 𝑖 = 1 to 𝑁 .

15: for 𝑖 = 1, 2 // Double learning do
16: Randomly sample a batch of 𝑏 episodes: B =

{(𝑜1, 𝑎1, 𝑟1, ..., 𝑜𝑇 , 𝑎𝑇 , 𝑟𝑇 )} from D.

17: for 𝑡 = 1 to 𝑇 // Recurrent softmax learning do

18: Sample 𝐾 noise 𝜖 ∼ N(0, 𝜎 ′)
19: 𝑎𝑡 ← 𝜋𝑖 (ℎ𝑡 ;𝜙

−
𝑖 ) + 𝑐𝑙𝑖𝑝 (𝜖,−𝑐, 𝑐)

20: �̂� (ℎ𝑡 , 𝑎𝑡 ) ← min𝑗=1,2 (𝑄 𝑗 (ℎ𝑡 , 𝑎𝑡 ;𝜃
−
𝑗 ))

21: Compute softmax𝛽 (�̂� (ℎ𝑡 , ·)) by Eq. (8)

22: 𝑦𝑡 ← 𝑟 + 𝛾 (1 − 𝑑) softmax𝛽 (�̂� (ℎ𝑡 , ·))
23: end for

24: Update 𝜃𝑖 according to Bellman loss:
1
𝑁

∑
ℎ∈B

∑
𝑡 (𝑄𝑖 (ℎ𝑡 , 𝑎;𝜃𝑖 ) − 𝑦𝑖 )

2

25: if episodes mod 𝑑 = 0 // Delayed update then

26: Update actor 𝜙𝑖 by recurrent policy gradient:

∇𝜙𝑖
𝐽 (𝜙𝑖 ) =

1

𝑁

∑
ℎ∈B

∑
𝑡

[
∇𝜙𝑖

(𝜋 (ℎ𝑡 ;𝜙𝑖 ))

∇𝑎𝑄𝑖 (ℎ𝑡 , 𝑎;𝜃𝑖 ) |𝑎=𝜋 (ℎ𝑡 ;𝜙𝑖 )

]
27: Update target networks:

𝜃−𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃−𝑖 , 𝜙
−
𝑖 ← 𝜏𝜙𝑖 + (1 − 𝜏)𝜙−𝑖

28: end if

29: end for

30: end for

31: Obtain policy 𝜋𝑘 and evaluate 𝐸𝜋𝑘 .
32: 𝜆𝑘 = 𝜆𝑘 + 𝛼 (𝐸𝜋𝑘 − 𝐸0) // Gradient update
33: 𝜆𝑘−1 ← 𝜆𝑘
34: end while

35: Output 𝜋𝑘

𝑄 (ℎ𝑡 , 𝑎𝑡 ;𝜃 ) = E𝑠𝑡 ,𝑎𝑡 ,...,𝑠𝑡+𝑇 ,𝑎𝑡+𝑇 |ℎ𝑡 ,𝜋 ( ·;𝜙)

[ ∑𝑇
𝑖=0 𝛾

𝑖𝑟 (𝑠𝑡+𝑖 , 𝑎𝑡+𝑖 )
]
,

(6)

where the expectation is takenwith respect to the conditional proba-

bility 𝑝 (𝑠𝑡 , 𝑎𝑡 , ..., 𝑠𝑡+𝑇 , 𝑎𝑡+𝑇 |ℎ𝑡 , 𝜋 (·;𝜙)) of the trajectory distribution
associated with history ℎ𝑡 and the policy 𝜋 (·;𝜙)). RSD4 initializes

5
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double critic networks and double actor networks, where critic net-

works𝑄 (ℎ𝑡 , 𝑎𝑡 ;𝜃 ) estimate the value of state-action pairs, and actor

networks 𝜋 (·;𝜙) are responsible for outputting control actions.

5.1 The Training Algorithm

Recurrent Network Architecture. Despite the success of RL in a

number of challenging tasks, state-of-the-art RL algorithms such

as TD3 [6] are limited to solving fully-observable tasks. As a result,

they can fail when faced with partially observable tasks as the

problem considered here. To address this problem, compared to

prior non-recurrent policy gradient methods, RSD4 incorporates

recurrency in designing the architecture for neural networks rather

than simply using feedforward networks in the policy update. This

strengthens the memory capability of RSD4, and enables it to learn

hidden factors or temporal correlation of the system dynamics. We

then update the policy by RDPG [8]:

∇𝜙 𝐽 (𝜋 (·;𝜙)) = Eℎ𝑡

[∑
𝑡

∇𝜙 (𝜋 (ℎ𝑡 ;𝜙))∇𝑎𝑄 (ℎ𝑡 , 𝑎;𝜃 )
���𝑎 = 𝜋 (ℎ𝑡 ;𝜙)

]
.

(7)

Here to compute the RDPG, a sequence of episodes will be stored in

the replay buffer D as a training sample (line 14). RSD4 computes

target values (𝑦1, 𝑦2, ...., 𝑦𝑇 ) for each sampled episode using the

recurrent networks in lines 17 − 23. Critics and actors are updated

recurrently, as shown in line 24 and 26, respectively.

Softmax Double Learning. Having a good estimate of the value

function is critical for RL agents to achieve good performance [22].

We therefore propose to incorporate the softmax operator for more

accurate value function estimation in different scenarios. In lines

21 − 22, we compute the Q-function by softmax operator by:

softmax𝛽 (𝑄 (ℎ, ·)) =
E𝑎∼𝑝

[
exp(𝛽𝑄 (ℎ,𝑎;𝜃 ))𝑄 (ℎ,𝑎;𝜃 )

𝑝 (𝑎)

]
E𝑎∼𝑝

[
exp(𝛽𝑄 (ℎ,𝑎;𝜃 ))

𝑝 (𝑎)

] (8)

where 𝛽 denotes the inverse temperature and 𝑝 is the sampling

distribution. The target value for critic 𝑄𝑖 is given by 𝑦𝑖 = 𝑟 +
𝛾 softmax𝛽 (�̂� (ℎ, ·)) in line 22, where �̂� (ℎ, ·) denotes the value esti-
mation function in line 20.

RSD4 further adopts a delayed policy update mechanism from [6]

(line 25) to avoid training divergence due to frequent updates of the

policy. Thus, the policy network is updated at a lower frequency

than the value network to minimize error before introducing a

policy update, with the similar goal of making the scheduling policy

more robust in various system dynamics.

5.2 Network Architecture

RSD4 uses double actor-networks and double critic-networks. The

architecture of critic networks in Figure 6, and actor networks are

similar, with the difference being removing the action𝑎𝑡 in the input
and changing the output value𝑄 (𝑠𝑡 , 𝑎𝑡 ) to action 𝑎𝑡 . The recurrent
layers build upon Long-Short-Term-Memory (LSTM) [9] to perform

RDPG in Eq. (7), and there are two parallel branches, i.e., the fully

connected branch and the LSTM branch. This architecture is firstly

proposed in [24] and is effective for our scheduling problem, as

validated in our experiments.

The LSTM branch is designed to strengthen the memory abil-

ity of RSD4 algorithm, since it allows the agent to incorporate a

large amount of network measurement history into its state space

to capture the long-term temporal dependencies of actual system

dynamics. The LSTM layer is embedded in the second layer of the

multilayer perceptron feature extractor. Consequently, our RSD4
algorithm can well handle various partially observable settings. The

fully connected branch is designed to capture more information

and improve expressiveness in the current time slot, which pro-

vides subsequent layers with more direct access to the current state

without requiring information to filter through the LSTM branch.

This makes RSD4 more sensitive to the current system state, so that

abrupt changes of environmental conditions, e.g., a sudden burst of

arrivals or temporal channel condition degradation, can be detected

rapidly (shown in Section 6.4.3).

Figure 6: The architecture of the critic network. There are

double parallel branches of the LSTM branch and the fully-

connected branch, which are later concatenated together by

a fully-connected layer to output Q value.

Remark 3. The architecture in Figure 6 accounts for the ability to

resolve partial observability issues. Most non-DRL-based methods and

non-recurrent DRL algorithms do not directly handle this case. Our

POMDP formulation and RSD4 solution well handle such potentially

non-stationary and partially observable dynamics by the memory

mechanism enabled by LSTM, which helps the agent to learn from a

batch of history and reduce the impact of temporal variability.

6 EXPERIMENT RESULTS

We conduct extensive experiments on RSD4 based on real-world

datasets and simulated data. We first present an ablation study

of RSD4 and then compare performances of RSD4 with existing

DRL methods and classical non-DRL-based algorithms. Then, we

design various hard settings to validate the ability of RSD4 to handle
partially observability and scalability. Each experiment is repeated

with 5 different random seeds, and the average result is presented.

6.1 Environment Setup

Below, we specify the single-hop environment based on the network

in Figure 2. The multi-hop environment is constructed in a similar

way and will be specified in Section 6.5.

Arrivals. The arrivals of different users are given by a LTE dataset

[15], which records the traffic flow of mobile carriers’ 4G LTE

network in approximately one year. We construct an environment

with four types of arrivals given by the LTE dataset, which are

visualized in Figure 7(a). The character of selected data records is

given in Table 1, which simulates four representative tasks, i.e., file

transmission, online forum, VR gaming, and text communication,

according to their rates and delay requirements.
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Service Channel Conditions. The channel states are given by a

wireless 2.4GHz dataset [30], which samples the received signal

strength indicator (RSSI) in the check-in hall of Shenzhen Baoan

International Airport. Each channel state is quantized into 4 states,

each representing a RSSI level, which is visualized in Figure 7(b),

whose average channel states are given in Table 1.

Table 1: Summary of arrivals and channel states.

User Rate 𝜏𝑖 Character Avg. Channel

1 1.96 6 File Transmission 1.79

2 0.91 6 Online Forum 1.83

3 2.46 1 VR Gaming 1.82

4 0.70 1 Text Communication 1.77

(a) Visulization of four arrivals in 5000 time slots.

(b) Visulization of channel conditions in 5000 time slots.

Figure 7: Heat maps of arrivals and channel conditions.

Service Outcomes. The probability that a transmission for user 𝑖
is successful under channel state 𝑐 and allocated resource 𝑒 is

𝑃𝑖 (𝑒, 𝑐) =
2

1 + exp[−2𝑒/(𝑓 3𝑖 𝑐)]
− 1 (9)

as that in [3], where 𝑓𝑖 denotes the distance between user 𝑖 and the

server. This models a wireless downlink system.

6.2 Ablation Study

We first present an ablation study on network architectures and

important hyperparameters including policy update frequency and

learning rate in this subsection. The results will guide us in our

algorithm parameter setting. To keep the underlying MDP well-

defined with time-invariant distributions, in the ablation study, we

use simulated arrivals and channels in the environment by pre-

specifying their distributions.

6.2.1 Network Architectures. We compare different network ar-

chitectures in Figure 8 with our architecture in Figure 6.3 These

architectures are tested with RSD4 on the task of maximizing the

Lagrangian function in Eq. (2) on 𝜆 = {0, 0.1, ..., 1}, since we find
this range of 𝜆 is the region of possible optimal multiplier 𝜆∗ for
our environment setting. We normalize the rewards obtained under

different 𝜆 and results are shown in Figure 9(a), where rewards ob-

tained with user-level decomposition mentioned in Section 4.2 are

3We only present the first several layers of the critic network, while the last two layers
are the same as that in Figure 6.

presented as well. We find that double-branch architecture obtained

maximum rewards in both situations, and rewards are further im-

proved by taking the last action 𝑎𝑡−1 as input to LSTM (see Figure

8). This validates the advantage of our proposed double-branch

architecture and implies that taking action 𝑎𝑡−1 in the last timestep

into account can better capture hidden correlation across time.

(a) Single-branch
with 𝑎𝑡−1

(b) Double-branch without 𝑎𝑡−1 (c) Single-branch
without 𝑎𝑡−1

Figure 8: Different Network Architectures (part).

(a) Different network architecture (b) Different policy frequencies

Figure 9: Experiments of the ablation study.

6.2.2 Policy Delay. RSD4 adopts a delayed policy update mecha-

nism (line 25 in Algorithm 1), to avoid training divergence due to

overestimating a poor policy [6]. The policy network is updated

at a lower frequency than the value network to minimize error

before introducing a policy update. We evaluate different policy

frequencies on the same simulated environment as Section 6.2.1 in

Figure 9(b). The results show that a moderate policy frequency of 2

improves peak reward in both original and decomposed cases.

6.2.3 Learning Rate. The learning rate 𝛼 in Algorithm 1 is critical.

We execute Algorithm 1 under different 𝛼 values. Figure 10(a) and

10(a) show the iteration of 𝜆𝑘 and resource consumptions, respec-

tively. A learning rate of 0.1 is too large such that {𝜆𝑘 } fluctuates
largely, while a small learning rate e.g., 0.01 does eliminate the

large fluctuation of {𝜆𝑘 } but convergences too slow. Thus, we use a
decaying learning rate, which halves the learning rate when 𝜆 flips

in three consecutive time slots, i.e., 𝛼𝑘+1 = 𝛼𝑘 if 𝜆𝑘+1 ≥ 𝜆𝑘 ≥ 𝜆𝑘−1
or 𝜆𝑘+1 ≤ 𝜆𝑘 ≤ 𝜆𝑘−1, otherwise 𝛼𝑘+1 = 𝛼𝑘/2.

6.3 Performance Comparison

We compare performances of RSD4 with existing DRL algorithms

and classical non-DRL methods. The benchmark DRL algorithms

include Twin Delayed DDPG (TD3) [6] and Softmax DDPG (SD3)

[22], both are state-of-the-art algorithms. We apply them with La-

grangian dual to ensure average resource constraints. The non-DRL

algorithms include Programming, Uniform, and Earliest Deadline

First (EDF) [5]:
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(a) 𝜆𝑘 (b) Resouce consumption

Figure 10: Iterations under different learning rates.

(i) Programming: Solve the following static constrained program-

ming problem P𝑠 for each time slot 𝑡 with resource constraint using
convex programming [27] (time index 𝑡 omitted):

P𝑠 : max
𝒆

𝑁∑
𝑖=1

𝛽𝑖

𝜏𝑖∑
𝜏=1

𝐵𝑖𝜏𝑃𝑖 (𝑒
𝑖
𝜏 , 𝑐𝑖,𝜏 ) (10)

s.t.

𝑁∑
𝑖=1

𝒆�𝑖 𝑩𝑖 ≤ 𝐸0

The optimal valueT∗
𝑠𝑡𝑎𝑡𝑖𝑐 forP𝑠 serves as the static optimal through-

put for the Problem P in Eq. (1).

(ii) Uniform: Assign resources to different packets uniformly.

(iii) Earliest Deadline First (EDF): Assign all resources to packets

in each user’s queue with the shortest deadline equally.

To also evaluate the case when the resource expenditure at each

time may be strictly bounded, we consider the hard resource con-

straint 𝐸𝑚𝑎𝑥 for each time slot, i.e., scheduling decisions in each

time slot cannot exceed 𝐸𝑚𝑎𝑥 . We introduce two ways to ensure

this. The first way is to scale each component equally of RSD4’s de-
cision to ensure the total expenditure is bounded by 𝐸𝑚𝑎𝑥 (denoted

as RSD4-𝐸𝑚𝑎𝑥 -1). The second way is to allocate resources to packets

with smaller remaining time until the total expenditure is 𝐸𝑚𝑎𝑥

and set all other allocations to zero (denoted as RSD4-𝐸𝑚𝑎𝑥 -2).

(a) Throughput (b) Resource Consumption

Figure 11: Comparison of different algorithms.

The comparison of RSD4 with other algorithms is shown in Fig-

ure 11 with 0 ≤ 𝐸0 ≤ 10, where arrivals and channel conditions are

set according to real datasets summarized in Table 1. Here the chan-

nels are assumed to be unobservable to the scheduler. This scenario

simulates a multi-user resource-constrained wireless base-station

providing delay-constrained scheduling services. We find that per-

formances of RSD4-𝐸𝑚𝑎𝑥 -1 and RSD4-𝐸𝑚𝑎𝑥 -2 are quite similar to

RSD4when setting 𝐸𝑚𝑎𝑥 = 2𝐸0 in each group of experiments, which

means that hard resource constraint can be achieved with our meth-

ods without much performance degradation. Besides, from Figure

11(a), we see that RSD4 outperforms all benchmarks in each resource

limit. In the small-medium resource regime with 0 ≤ 𝐸0 ≤ 7, the

static optimality obtained by Programming ranks only lower than

RSD4. However, in the large resource regime with 8 ≤ 𝐸0 ≤ 10,

RSD4 and TD3 outperform classical methods significantly. From

Figure 11(b), we see that all DRL algorithms satisfy the average

resource limit, while EDF fails to fully utilize available resources

since packets with the shortest deadline are too few to consume all

available resources. Results in Figure 11 illustrate the superiority

of RSD4 over the benchmarks.

6.4 Partially Observable Systems

We compare the performance of RSD4 with other DRL algorithms

to further validate the effectiveness of its recurrent module. Our

comparison focuses on maximizing the Lagrangian function in Eq.

(2) with the same environment of Section 6.3, which is essentially

equivalent to the task of throughput maximization. In fact, each

average resource limit 𝐸0 corresponds to an optimal 𝜆∗ according
to Section 3.2. Thus, maxmizing the Lagrangian function on some

𝜆 is equivalent to throughput maximization under some average

resource limit of 𝐸0 (𝜆) determined by 𝜆. Thus, focusing on maxi-

mizing the Lagrangian function in Eq. (2) allows us to examine a

wide range of problems parameterized by 𝜆.

6.4.1 Missing Buffer State. We first consider an extreme environ-

ment where the buffer state is unobservable by the agent, and

only arrivals and channels are given. Specifically, observation 𝑜𝑡 =
[𝑨(𝑡), 𝒄 (𝑡)], which implies the agent needs to memorize arrivals

and service outcomes across multiple time slots to have accurate

estimations of current system states. From Figure 12(a), we find

that with buffer state, i.e., the underlying MDP is fully observable,

RSD4 and SD3 obtain similar maximum rewards under different

𝜆. When the buffer state is missing, RSD4 still achieves almost the

same maximum rewards, whereas non-recurrent DRL algorithms

SD3 and TD3 suffer from significant performance loss.

6.4.2 Unobservable Hidden Factors. Another common type of par-

tial observability comes from unobserved hidden factors in the

underlying MDP, e.g., vehicle obstruction will influence in-tunnel

wireless propagation channel which is hard to trace [29]. We design

an environment where service outcomes are related to the time in-

dex, i.e., services are available only when the current time slot 𝑡 is a
multiple of some period, e.g., wireless communication interfered by

periodic jamming signals. In this case, the underlying MDP is par-

tially observable since the hidden factor, i.e., the period, is unknown

to the agent and the observation is 𝑜𝑡 = [𝑩1 (𝑡), ...,𝑩𝑁 (𝑡), 𝒄 (𝑡)].
From Figure 12(b), we find that RSD4 outperforms TD3 and SD3 in

both tested cases with periods 5 and 10, and the performance gain

of RSD4 is more significant under large 𝜆 case, which corresponds

to the small resource regime.

6.4.3 Time-varying Environments. We next investigate partial ob-

servability coming from the time variability of underlying system

dynamics. We design two types of time variability by switching

environment dynamics during the experiments, i.e., in one setting

we double the rate of arrivals and in the other we change the chan-

nel statistics. In both cases the channel states are unobservable.

8



Effective Multi-User Delay-Constrained Scheduling with
Deep Recurrent Reinforcement Learning MobiHoc ’22, October 17–20, 2022, Seoul, Republic of Korea

(a) Environment without buffer state. (b) Environment with hidden factors.

Figure 12: Various partially observable settings.

The switch happens at slot 100, 000 and results are shown in Figure

13 for the task of maximizing Lagrangian function under 𝜆 = 0.5,
where the evaluated rewards of training processes under the envi-

ronments with switching in the middle and switching at the very

beginning. In both cases, we find that, soon after switching, RSD4
reaches the same rewards one can obtain by training in these envi-

ronments from the very beginning, while TD3 and SD3 both suffer

from reward loss after switching, even if they are trained from the

beginning for this new environment. This validates the robustness

and performance of RSD4 in time-varying environments.

(a) Switch on arrival strength (b) Switch on channel availability

Figure 13: Experiments on switching environments.

Remark 4. Experimental results on these three partially observ-

able environments show the superiority of RSD4 at addressing partial

observability issues. They also show the benefits of adopting a POMDP

formulation in practical scheduling problems, since partial observabil-

ity can arise from many sources. This comparison also sheds light on

understanding the sub-optimality of non-recurrent DRL algorithms

or classical non-DRL methods in POMDP.

6.5 Scalability by Decomposition and Merging

We now turn to investigate the scalability of the algorithm by

conducting experiments in systems with a large number of users

and with multi-hop structures. We focus on the setting where the

channel states are assumed to be unobservable. We will show that

the user-level decomposition and node-level techniques in RSD4
make it a highly scalable solution.

6.5.1 Large-Scale System. We present the evaluated rewards of

RSD4 with other algorithms on the task of maximizing the La-

grangian function with 𝜆 = 0.3 on different numbers of users

ranging from 4 users to 400 users in Figure 14(a). Here we generate

arrivals and channels according to predefined random processes,

so that system dynamics are known and we can get the optimal

reward by DP. It is worth noting that computing the optimal in-

duces extremely high computation overhead in large-scale tasks

and requires accessing full system dynamics, and is not practical in

real-world applications. We examine this case here emphasize the

near-optimality and effectiveness of RSD4. All baselines are imple-

mented with the same set of hyperparameters to ensure fairness.

From Figure 14(a), we find that when user number is less than

or equals to 20, the performance of different baselines do not dif-

fer much, and all of them achieve near-optimal rewards. However,

with an increasing number of users, all DRL algorithms, including

RSD4 without decomposition fail, as well as Uniform and EDF. Be-

sides, RSD4 always achieves the best and near-optimal performance

regardless of the number of users. Figure 14(b) also shows the learn-

ing curve under 50 users (from which the performance of different

baselines start to diverge significantly), where only RSD4 achieves

the nearly optimal reward. We also see that RSD4 without state-

decomposition fails in this case. This demonstrates the necessity

of state-decomposition, without which the algorithm parameter

amount will become too large and prohibits efficient training.

Remark 5. When the system scale is beyond the hypothesis di-

mension of the underlying neural network, e.g., when the user number

is larger than 20 in Figure 14(a), the performance of DRL algorithms

will degrade rapidly, which means neural networks with more hyper-

parameters will be required. However, with more hyperparameters,

neural networks are much harder to train and require significantly

more computational power. With state decomposition, in contrast,

RSD4 efficiently controls the state dimension and still retains the near-

optimal performance. This validates the effectiveness of our proposed

user-level decomposition.

(a) Rewards on different user scales. (b) Training process with 50 users.

Figure 14: Experiments on scalability.

6.5.2 Multi-hop Network. We now turn to the multihop network

setting. Recall that we propose node-level merging in Section 4.3

to schedule under multihop networks. We conduct experiments on

a multi-hop network depicted in Figure 4(a), where there are three

paths, 𝑃𝑎𝑡ℎ1 = 1 → 2 → 3 → 5, 𝑃𝑎𝑡ℎ2 = 2 → 4 → 6, and 𝑃𝑎𝑡ℎ3 =
2 → 3. 𝑃𝑎𝑡ℎ1, 𝑃𝑎𝑡ℎ2, and 𝑃𝑎𝑡ℎ3 has 3, 4, and 5 flows passing through
respectively. The 12 flows have different deadlines ranging from 3

to 5 timeslots and the scheduler needs to make decisions at nodes

1, 2, 3 and 4 simultaneously, with average resource limits 10, 30,

0.3, 3, respectively. The arrival and channel states are drawn from

real-world datasets specified above, and the throughput obtained

by different algorithms are shown in Figure 15(a).

We see that RSD4 achieves the maximum throughput and signifi-

cantly outperforms other benchmarks, including TD3 and SD3 and

non-DRL-based methods Programming, Uniform, and EDF. To fur-

ther validate the scalability of our RSD4 algorithm, we fix the four

multiplier values to 0.5 and compare it with other benchmarks on

the task of maximizing the Lagrangian function for this multi-hop

network. We test the algorithm with an increasing number of flows

from 12 flows to 180 flows. RSD4 shows a larger performance gain

over other algorithms as the number of flows increase and saves

computation resources by unified training.
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(a) Throughput of different algorithms
on a multi-hop network with 12 flows.

(b) Rewards on different user scales of multi-
hop networks.

Figure 15: Experiments on multihop networks.

7 CONCLUSION

This paper studies the problem of multi-user latency-constrained

scheduling with average resource constraints. To tackle partial ob-

servability and scalability issues, we propose a novel DRL algorithm,

RSD4, which is a data-driven method based on a POMDP formula-

tion. RSD4 guarantees resource and delay constraints by Lagrangian
dual and delay-sensitive queues, respectively. RSD4 successfully

tackles partially observable issues with a recurrent network mod-

ule. It also enables robust value estimation with the softmax oper-

ator, and introduces the user-level decomposition and node-level

merging techniques to ensure scalability. We conduct extensive ex-

periments on both simulated environments and real-world datasets.

Our results show that RSD4 is robust to various system dynamics

and partially observable settings, and significantly outperforms

existing DRL/non-DRL-based benchmarks.
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